Explain详解与索引最佳实践

听课问题(听完课自己查资料)

  1. type中常用类型详细解释 null <- system <- const <- er_ref <- ref <- range <- index <- all

Explain 各列解释

EXPLAIN SELECT* 
FROMactorLEFT JOIN film_actor ON actor_id = actor.id;

1. id

代表执行的先后顺序 比如现在依次有 3、2、1、2 那么执行顺序就是 3、2(第一次出现的2) 、2(第二次出现的2)、1

总结:越大执行越靠前,如果id形同那么最先出现的最先执行

2. select_type

分为四种类型 simple、subquery、derived、primary

a. simple

简单查询比如就一个简单的单条语句查询 EXPLAIN SELECT * FROM actor;

例如这样单表查询 没有进行关联查询也没有关联其他表有临时表查询

b. subquery

在select后面的称为 subquery类型 比如这个查询

EXPLAIN SELECT (SELECT id FROM film_actor) as id FROM actor;

其中select后面括号中的就是一个subquery类型

c. derived

是跟在from后面组成的临时表,如下SQL

EXPLAIN SELECT te.* FROM (SELECT * FROM actor) as te;

其中from后面又跟了一个子查询并且这个子查询自己构建了一个临时表 所以这个子查询就是derived类型

d. primary

最外层的查询语句

3. table

就是当前这一列正在查询的表名称
但是如下图

explain select (select 1 from actor where id = 1) from (select * from film where id = 1) der;

因为有构建一个临时表,所以上边id=1的一列是一个临时表并没有真正的名称,但是id=3那一条正是构建这个临时表的子查询sql 所以显示 <derived3>后面的3就是指向的id 这个示例表示临时表是id=3的子查询sql生成的。

4. type

分为好多种,常见的有(最优在前): null - system - const - eq_ref - ref - range - index - all

a. null

速度是最快的,相当于没有经过这张表查询或者索引

explain select min(id) from film;

上边这个根据主键id 查询最小的主键id,在主键索引中都是排序的,所以第一个id肯定就是整张表中最小的,所以查询的时候什么都不用管无脑拿表中第一个id就行了,那么肯定是最快的,因为后面有什么数据根本不关心,只需要拿第一个id

b. system

仅次于null

流程: 相当于在一个只有一条数据的表中查询

EXPLAIN SELECT te.* FROM (SELECT * FROM actor WHERE id = 1) as te

id = 1 的执行计划中可以看到 type = system

因为在查询的时候from后面有一个子查询SQL ,这个子查询SQL有一个条件只能查询出来一条数据组成一个临时表,但是只有一个数据所以最外边的数据相当于什么都没干直接拿这条数据就可以了;使用show wranings查看就可以发现

select '1' AS `id`,'a' AS `name`,'2017-12-22 15:27:18' AS `update_time` from dual

最终优化后的结果 select 后面都是常数 from查了一个虚拟的空表,意思就是表只有一个数据的时候直接就将值覆盖给了select中,不会再去查表了,这样肯定是很快的

c. const

EXPLAIN SELECT* 
FROMactor 
WHEREid = 1;
SHOW WARNINGS;SELECT'1' AS `id`,'a' AS `name`,'2017-12-22 15:27:18' AS `update_time` 
FROM`hmh_test`.`actor` 
WHERE
TRUE

比system慢

代表了是使用了主键索引或者唯一键索引,走了索引并且只能查出来一条 那么肯定也是很快的,其实也是相当于常量,和system比会慢,因为const总归还是要筛选表中数据的,而system是直接将这条数据拿出来即可根本不需要筛选

d. eq_ref

是使用了联合查询,并且这个联合查询是走的唯一索引的

e. ref

MySQL表中索引有 唯一索引 还有非唯一索引 当使用的索引是非唯一索引,虽然走了索引但是可能有多条数据 就会是ref

f. range

是使用的范围查询 比如 select * from actor where id > 10

这样虽然id为主键索引,走主键索引应该会快的,但是因为是使用的范围查询,在表中说不定有 成千上百万数据都是id > 10 ,在查询这么多的数据效率也不会快的

g. index

其实是全表全表扫描二级索引,这样是比较慢的,其实也就相当于扫描了全部数据了,只不过是二级索引,会比all性能好,但是遇到了index也是需要优化的

h. all

全表查询,可以是试着将select中查询数据返回的值设置为 联合索引中的字段 这样就会走index二级索引了

5. possible_keys

代表了可能会走的索引 如果是null那么很有可能会走全表扫描

6. key列

是实际上sql会走得索引

7. key_len列

是当前所走索引中走到的字段 所有的长度 和

比如 key_test(name,age,gend)

但是 where name = '' and age = '';

只用到了 name 和 age 没有用到gend但是也走了key_test索引 这时候key_len长度就是 name和age总和 没有gend

CREATE TABLE `actor` (

`id` int NOT NULL,

`name` varchar(45) DEFAULT NULL,

`update_time` datetime DEFAULT NULL,

PRIMARY KEY (`id`),

KEY `test` (`name`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb3;

上边表中比如写一个 explain select * from actor where name = ''; 并且数据库编码格式为 utf8

那么 key_len 就为 138 因为 utf8 并且 走了索引 那么计算方式就是 3n+2 其中n就是设置字段的长度 3 * 45 + 2 = 137 但是因为 name 是可以为 null 那么该字段会额为添加 1 长度用来计算该字段是否为 null 所以总的下来是 137 + 1 = 128

如果name不为null 那么就是128

key_len计算规则如下:

字符串,char(n)和varchar(n),5.0.3以后版本中,n均代表字符数,而不是字节数,如果是utf-8,一个数字或字母占1个字节,一个汉字

占3个字节

char(n):如果存汉字长度就是 3n 字节

varchar(n):如果存汉字则长度是 3n + 2 字节,加的2字节用来存储字符串长度,因为varchar是变长字符串

数值类型

tinyint:1字节

smallint:2字节

int:4字节

bigint:8字节

时间类型

date:3字节

timestamp:4字节

datetime:8字节

如果字段允许为 NULL,需要1字节记录是否为 NULL

索引最大长度是768字节,当字符串过长时,mysql会做一个类似左前缀索引的处理,将前半部分的字符提取出来做索

引。

8. ref列

以上就是说该条sql中 所用到的 索引 字段的值是什么。 比如显示const 代表常量 、表中字段名

比如

explain select * from actor ac left join film_actor fa on fa.id = ac.id where ac.name = 'a';

使用两个表的id进行关联 并且 ac.name 为索引 所以该条sql走了索引

第一个ref = const 是因为 where ac.name = 'a' 中 直接写死了 a 所以 a 代表常量

第二条 是 ac.id 代表film_actor表关联使用索引 id关联的,相当于一个条件 id值等于 ac.id

9. rows列

mysql估计要读取并检测的行数,注意这个不是结果集里的行数。

10. Extra列

using index 覆盖索引: 如果为null 代表是走了索引但是是二级索引而且该sql所需字段二级索引中不能全部包含所以需要去主键索引中回表 如果是 using index 代表不需要回表,二级索引已经全部包含该sql所需的全部字段或者直接走的主键索引

using where 使用where条件处理,没走索引

Using temporary 代表没有走索引 而且后面还没有跟where条件 全表扫描 需要优化

Using index condition 使用索引,但是比如使用了联合索引 age、name 但是只使用age 而且 条件为 where age > 10 这种情况就会出现 Using index condition

Using filesort 代表使用了 order by name 但是name并不是索引 如果name是索引那么 就会是 using index

面试问题

1. 关于为什么有时候不走主键索引而是走二级索引?

表如下

CREATE TABLE `film` (`id` int NOT NULL AUTO_INCREMENT,`name` varchar(10) DEFAULT NULL,PRIMARY KEY (`id`),KEY `idx_name` (`name`)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8mb3;

可以看到film只有两个字段 一个是主键id 和索引 name 所以这个表会构建两个树形索引 一个是主键索引 一个是name构建的二级索引

当我们查询的时候 例如 EXPLAIN SELECT id,name FROM film;

上图可以看到这个语句走的是 name二级索引,但是index也就是二级索引会慢,那么为什么默认还会走二级索引呢?

答案如下:

因为二级索引 使用的是name 所以叶子节点都是 name 而非叶子节点都是主键id

他们叶子节点 + 非叶子节点 就能组成一个完整的SELECT后面所需字段信息,那么就会走二级索引,如果发现满足不了select后面需要的信息那么就会走主键索引。

比如

CREATE TABLE `actor` (`id` int NOT NULL,`name` varchar(45) DEFAULT NULL,`update_time` datetime DEFAULT NULL,PRIMARY KEY (`id`),KEY `test` (`name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb3;

表中写一个 EXPLAIN SELECT * FROM actor;没走索引

但是如果加了

EXPLAIN SELECT id,name FROM actor; 会走test索引,因为id是非叶子节点 + 叶子节点name 正好构成了select后面需要的信息

a. 为什么会走二级索引?

因为 主键索引中非叶子节点存储的都是完整信息,占用内存比较大,并且MySQL内部会对SQL进行优化,会自动分析 走主键索引比较好还是走二级索引比较好。这是MySQL自己优化算法选择的。

而如果select语句后面所需的字段二级索引都包含 那么就会走二级索引,因为二级索引叶子节点只有主键id存储小,二级索引自身就可以拼出来这条语句所需字段也不需要回表,肯定是比走唯一索引好的

比如 表firm 中name字段为 非唯一索引

select name from firm; 其实type = index

为什么会走二级索引: 因为二级索引里面就是使用的name作为索引的 而且select后面正好是只有name,二级索引可以满足当前查询,所以找到叶子节点 的 主键id给主键索引中找到该数据,可以减少内存的占用

b. 为什么还有规避掉 type = index呢

为什么不推荐index: 因为index其实扫描整个二级索引,找到所有的唯一键id找去主键索引中找数据 相当于二级索引全部遍历查询 并且去主键索引查找回表 肯定速度会慢

优化方式:后面添加索引条件 比如 where name = ? 这样就不会导致二级索引全表扫描了,即使回表也是回表的次数减少了

2. 为什么使用like '%aa%' 就会索引失效 而 like 'aa%'就不会失效

因为 like '%aa%' 在索引树中 字段都是有序的,这也是mysql索引快的主要原因,但是如果使用了 一个字段前后都模糊查询 就会导致字段变得无序 需要全表查询 比如 name like '%l%'

会发现 l 在第一个区间和第二个区间都出现了,但是 第一、二、三区间都是排序好的,肯定是不能从第一区间直接就知道第三区间也包含 I

如果使用 后面模糊查询,前面不模糊查询 name like 'B%' 就会知道第一个区间找到以后 第二区间第一个H开头,后面首字母只会越来越大 就不会再去找了,这样就可以走索引

使用mysql注意点

  1. 使用左走匹配原则
  2. 函数 类型转换 避免 比如 age 是int 类型 查询的时候 where age = '1' MySQL也可以接受后面 string写法 因为会自动将类型转换 这样就会导致 不走索引 不同版本优化不一样 可能会将age转为 string 可能会将 '1' 转为 int 1
  3. 尽量使用覆盖索引 如果查询 是查询 type = all 那么可以将返回的数据尽量是 联合索引中的字段 这样 type = index
  4. 比如 key_test(name,age,gend) 查询语句可以为 三个字段打乱组合 比如 where age = '' and name = '' and gend = '';mysql会优化为 最左前缀 但是不能where 没有 name 这样不符合最左前缀原则也优化不出来最左前缀
  5. 尽量不适用 in 、 or 、 > 、<因为in就算是 索引字段 但是如果 in中太多 mysql优化的时候认为还没有 全表快 也可能走全表扫描
  6. 不使用 != 、is null 、is not null 会全表扫描
  7. like 使用 %a% 会导致索引失效
  8. 联合索引中间字段不使用范围的条件 比如 key_test(name,age,gend) 然后sql条件为 where name = 'a' and age > 10 and gend = 10 那么 name = 'a' and age > 10 都会走索引 而 gend = 10 不会走索引,按道理 key_test联合索引是有 gend的但是为什么没有走索引就是因为 使用 age > 10 找到数据以后 后面的 gend就是无序的了

索引使用总结:

like KK%相当于=常量,%KK和%KK% 相当于范围

自学笔记

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/602622.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python笔记01-你好Python

文章目录 Python简介环境安装Hello world开发工具 Python简介 python的诞生 1989年&#xff0c;为了打发圣诞节假期&#xff0c;Gudio van Rossum吉多 范罗苏姆&#xff08;龟叔&#xff09;决心开发一个新的解释程序&#xff08;Python雏形&#xff09; 1991年&#xff0c;第…

深度学习|交叉熵

文章目录 什么是交叉熵如何构造信息量的函数关于 C 1 C_1 C1​参数的选择关于 C 2 C_2 C2​参数的选择 一个系统的熵如何比较两个系统的熵交叉熵在神经网络中的应用参考 什么是交叉熵 熵是用来衡量一个系统的混乱程度&#xff0c;混乱程度也其实代表着整个系统内部的不确定性。…

听GPT 讲Rust源代码--compiler(15)

File: rust/compiler/rustc_arena/src/lib.rs 在Rust源代码中&#xff0c;rustc_arena/src/lib.rs文件定义了TypedArena&#xff0c;ArenaChunk&#xff0c;DroplessArena和Arena结构体&#xff0c;以及一些与内存分配和容器操作相关的函数。 cold_path<F: FnOnce,drop,new,…

解决 POST http://x.x.x.x:8000/aaa/ net::ERR_CONNECTION_TIMED_OUT

记录一下我遇到的问题和解决办法 我的项目前后端分离&#xff0c;在前端用的vue访问后端时连接不上后端&#xff0c;一切操作都触发不了后端&#xff0c;数据也传不到后端去&#xff1b; 原因&#xff1a;url有问题&#xff0c;url地址写的不是本机&#xff0c;所以导致连接超…

UE5.1_UMG序列帧动画制作

UE5.1_UMG序列帧动画制作 UMG序列帧动画制作相对比较简单&#xff0c;不像视频帧需要创建媒体播放器那么复杂&#xff0c;以下简要说明&#xff1a; 1. 事件函数 2. 准备序列帧装入数组 3. 构造调用事件函数 4. 预览 序列帧UMG0105 5. 完成&#xff01;按需配置即可。

MySQL之数据类型建表以及约束

SELECT(查询) 查询操作用于从数据库中检索数据 查询可以基于不同的条件&#xff0c;如字段值、范围、排序等 查询结果可以返回单个记录或多个记录 查询指定列 select 列名 from 表名 列名&#xff1a;代表从指定的列名中查找 , 如果是查找对应的多列&#xff0c;则用英文…

【鸿蒙4.0】安装DevEcoStudio

1.下载安装包 HUAWEI DevEco Studio和SDK下载和升级 | HarmonyOS开发者华为鸿蒙DevEco Studio是面向全场景的一站式集成开发环境,&#xff0c;在鸿蒙官网下载或升级操作系统开发工具DevEco Studio最新版本&#xff0c;SDK配置和下载&#xff0c;2.1支持Mac、Windows操作系统。…

华为MDC610接口说明

1、MDC610对外功能接口 2、1、MDC610硬件技术规格

新火种AI|三星打响“AI手机”第一枪,2024会是AI终端元年吗?

作者&#xff1a;文子 编辑&#xff1a;小迪 AI手机&#xff0c;距离取代传统手机不远了。 三星新年第一炸&#xff0c;AI手机重磅来袭 2024年才刚刚开始&#xff0c;手机行业就迎来第一个王炸。 作为常年盘踞销量全球前三的品牌&#xff0c;三星突然宣布&#xff0c;将在北…

智慧工厂:科技与制造融合创新之路

随着科技的迅猛发展&#xff0c;智慧工厂成为制造业领域的热门话题。智慧工厂利用先进的技术和智能化系统&#xff0c;以提高生产效率、降低成本、增强产品质量和灵活性为目标&#xff0c;正在引领着未来制造业的发展。 智慧工厂的核心是数字化和自动化生产&#xff0c;相较于传…

Kettle Local引擎使用记录(基于Kettle web版数据集成开源工具data-integration源码)

Kettle Web &#x1f4da;第一章 前言&#x1f4da;第二章 demo源码&#x1f4d7;pom.xml引入Kettle引擎核心文件&#x1f4d7;java源码&#x1f4d5; controller&#x1f4d5; service&#x1f4d5; 其它&#x1f4d5; maven settings.xml &#x1f4d7;测试&#x1f4d5; 测试…

梦想家内容管理系统(Dreamer CMS)跨站请求伪造漏洞

梦想家内容管理系统&#xff08;Dreamer CMS&#xff09;跨站请求伪造漏洞 目标:GitHub - iteachyou-wjn/dreamer_cms: Dreamer CMS 梦想家内容发布系统采用流行的SpringBoot搭建&#xff0c;支持静态化、标签化建站。不需要专业的后台开发技能&#xff0c;会HTML就能建站&…

关于CNN卷积神经网络与Conv2D标准卷积的重要概念

温故而知新&#xff0c;可以为师矣&#xff01; 一、参考资料 深入解读卷积网络的工作原理&#xff08;附实现代码&#xff09; 深入解读反卷积网络&#xff08;附实现代码&#xff09; Wavelet U-net进行微光图像处理 卷积知识点 CNN网络的设计论&#xff1a;NAS vs Handcra…

解决Gitee每次push都需要输入用户名和密码

其实很简单&#xff0c;只需要使用命令 git config --global credential.helper store 在你下次push时只需要再输入一次用户名和密码&#xff0c;电脑就会保存下来&#xff0c;之后就无需进行输入了。

OpenHarmony底座升级指南(3.2升级4.0)

前言 本文旨在帮助开发者完成底座升级&#xff0c;文中主要以OpenHarmony 3.2 release 升级至OpenHarmony 4.0 release为模板描述。 一、流程概览&#xff1a; 1.1 准备工作 在准备阶段&#xff0c;需要完整收集所有的定制化修改&#xff0c;明确修改人&#xff1b;并且要将…

嵌入式项目——平衡小车(1)

焊接 驱动板需要焊接的如上图。 陀螺仪8pin排母电机两路排线插口。(个别同学需要焊接)两个电池仓,注意电池仓分正反。 安装 底部电池板 4个 双通尼龙柱M3*224个 尼龙螺钉M3*6电机驱动板

【算法笔记】深入理解dfs(两道dp题)

DFS过程的概述 一个一个节点的搜&#xff0c;如果是树状结构的话&#xff0c;先找到最左边那一条分支搜到最后一个节点&#xff0c;这个时候最后一个节点&#xff08;假设是b&#xff09;的数据会被更新&#xff08;具体看题目的要求&#xff09;&#xff0c;然后返回到上一个…

【计算机图形学】NAP: Neural 3D Articulation Prior

文章目录 1. 这篇论文做了什么事&#xff0c;有什么贡献&#xff1f;2. Related Work铰接物体建模3D中的Diffusion model扩散模型 3. Pipeline铰接树参数化基于Diffusion的铰接树生成去噪网络 4. 实验评价铰接物体生成——以往做法与本文提出的新指标NAP捕捉到的铰接物体分布质…

玩转Mysql 四(MySQL逻辑架构与数据引擎)

一路走来&#xff0c;所有遇到的人&#xff0c;帮助过我的、伤害过我的都是朋友&#xff0c;没有一个是敌人。 一、MySQL逻辑架构 1、从Oracle收购MySQL后&#xff0c;MySQL逻辑架构受Oracle影响&#xff0c;MySQL8版本中逻辑架构受Oracle的影响逐步完善查询缓存&#xff0c;O…

数据结构:树详解

创建二叉树 给出了完整的先序遍历序列&#xff0c;子树为空用’#’表示&#xff0c;所以这样我们在通过先序遍历序列创建二叉树时我们直到先序遍历序列是先进行根结点&#xff0c;然后左子树最后右子树的顺序进行遍历的&#xff0c;所以对于完整的先序遍历序列我们可以直到先序…