基于python的leetcode算法介绍之动态规划

文章目录

  • 零 算法介绍
  • 一 例题介绍 使用最小花费爬楼梯
    • 问题分析
  • Leetcode例题与思路
    • [118. 杨辉三角](https://leetcode.cn/problems/pascals-triangle/)
      • 解题思路
      • 题解
    • [53. 最大子数组和](https://leetcode.cn/problems/maximum-subarray/)
      • 解题思路
      • 题解
    • [96. 不同的二叉搜索树](https://leetcode.cn/problems/unique-binary-search-trees/)
      • 解题思路
      • 题解
    • [322. 零钱兑换](https://leetcode.cn/problems/coin-change/)
      • 解题思路
      • 题解
    • [124. 二叉树中的最大路径和](https://leetcode.cn/problems/binary-tree-maximum-path-sum/)
      • 解题思路
      • 题解

零 算法介绍

动态规划(Dynamic Programming,DP)是一种解决最优化问题的算法思想,通过将问题分解成更小的子问题来解决。其核心思想是将一个问题分解成更小的、相互独立的子问题,然后将子问题的解组合起来,形成原问题的解。但与之前的算法不一样的是,动态规划强调的是动态的过程,即在程序计算时,会出现随程序运行而变化的参数辅助程序完成算法计算。

动态规划算法的主要特点包括:

  1. 重叠子问题:动态规划算法解决的问题通常包含许多重叠的子问题。

  2. 状态转移方程:动态规划算法通常使用状态转移方程来描述问题的状态和状态转移关系。

  3. 自底向上:动态规划算法通常采用自底向上的方法,即从最小的子问题开始解决,逐步解决更大的子问题。

动态规划算法的应用范围非常广泛,包括:

  1. 组合优化问题:如背包问题、旅行商问题等。

  2. 序列问题:如最长公共子序列、最长递增子序列等。

  3. 图论问题:如最短路径问题、最小生成树问题等。

  4. 动态规划在游戏、人工智能、计算机图形学等领域也有广泛应用。

动态规划算法有很多变种,如线性动态规划、树形动态规划、网格动态规划等。在实际应用中,需要根据问题的特点选择合适的动态规划算法。

一 例题介绍 使用最小花费爬楼梯

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

示例 1:

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。

问题分析

动态规划强调的是动态的过程, 故当我们再看这道题目的时候,我们的关注点是 一旦你支付此费用,即可选择向上爬一个或者两个台阶。 当我们转换一下思路,则是:当前台阶的价值应该是由前一个台阶或是前前一个台阶决定的。如果这套规则适用的话,则代表第N阶的台阶等于total[n] = min(total[n-1]+cost[n-1], total[n-2]+cost[n-2])。即,当前台阶的最低花费应该是在上两级台阶的最小开销中进行选择。

代码呈现如下:

class Solution:def minCostClimbingStairs(self, cost: List[int]) -> int:old1, old2 = 0, 0     # 初始化前前一个台阶和前一个台阶的初始价格for i in cost:        # 对所有台阶遍历temp = i + min(old1, old2)     # 第N个台阶的花费是当前第N个台阶的价格加上前两级台阶中小的那个old1, old2 = old2, temp        # 迭代return min(old1, old2)

Leetcode例题与思路

接下来,我们列举关于Leetcode的几道例题,并通过动态规划的方式进行求解:

118. 杨辉三角

给定一个非负整数 *numRows,*生成「杨辉三角」的前 numRows 行。

在「杨辉三角」中,每个数是它左上方和右上方的数的和。

        11 11 2 11 3 3 11 4 6 4 1

解题思路

这道题目是最简单的动态规划题目,对于第N行来说,其第1个和最后一个应当为1,其余位置可以通过上一行中当前位置和当前位置的下一位置两个元素求和完成。转换成代码如下所示:

题解

class Solution:def generate(self, numRows: int) -> List[List[int]]:res = []for i in range(numRows):row = [None for _ in range(i + 1)]row[0], row[-1] = 1, 1for j in range(1, len(row) - 1):row[j] = res[i - 1][j - 1] + res[i - 1][j]res.append(row)return res

53. 最大子数组和

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

解题思路

由于这边仅需要找到最大和,无需判断位置。故我们仅需判断最大值作为我们的判断。那么最大子数组和应该有什么特点呢?其实从这道题目中我们就会发现从哪开始到哪结束是不重要的。需要关注的是在第N个元素的位置,我们之前的元素和大于零还是小于零。什么意思呢?即之前元素之和如果小于0,那么对于后续元素求和只有负面效果,故可以直接丢弃从第N个元素开始重新统计。而我们只需要在这个过程中,找到累计和最大的值就可以了。由题目的提示可知,-10^4 <= nums[i] <= 10^4。故我们可以选择-10000作为初始化:

题解

class Solution:def maxSubArray(self, nums: List[int]) -> int:temp, max_value = -10000, -10000for i in nums:temp = max(temp + i, i)max_value = max(temp, max_value)return max_value

96. 不同的二叉搜索树

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

示例 1:

在这里插入图片描述

解题思路

首先我们需要明确一个概念,什么是二叉搜索树:

二叉搜索树(Binary Search Tree, BST)是一种特殊的二叉树,它的每个节点都有一个关键值,并且所有节点的关键值满足以下性质:

  1. 节点的左子树(如果存在)的关键值都小于节点的关键值。

  2. 节点的右子树(如果存在)的关键值都大于节点的关键值。

  3. 节点的左右子树(如果存在)也都是二叉搜索树。

这种结构使得二叉搜索树在查找、插入和删除操作方面具有较高的效率。

那么面对这样一道题,我们该如何求解呢?首先,我们需要明确一个问题,就是对于N个节点的二叉树,我们可以把这个二叉树从节点切分,分为成小于该长度的二叉树来求解。换句话说,我们在面对一个4节点的二叉搜索树,可以看作013[代表左子树0,根节点1,右节点3],112, 211 , 310。所以我们仅需要得到1节点,2节点和3节点的树就可以推出4节点的数量。那么我们可以快速推出,0节点仅存在1种排列,1节点仅存在1种排列。从2节点开始,我们可以通过公式进行推理:N节点的树可以看作N个根和他们的左右子树。故,我们可以通过左子树的种类乘以右子树的种类得到每个节点存在子树的个数。继续以4节点树为例,可以分为013112, 211 , 310。当我们知道0,1,2,3个节点的数量时,就可以得到013[1*5]112[1*2], 211[2*1] , 310[5*1]。故四节点可以构建5+2+2+5=14个排列。

题解

class Solution:def numTrees(self, n: int) -> int:node_list = [1 for i in range(0, n+1)]for i in range(2, n+1):node_list[i] = sum([node_list[j] * node_list[i-j-1] for j in range(i)])return node_list[-1]

322. 零钱兑换

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1

你可以认为每种硬币的数量是无限的。

解题思路

这道题目可以转换成走楼梯的思路。如果还不能get到这个思路的话,我们再细说一下:

针对N块钱,凑出来的方法必然是考虑N块钱前一步的状态,即N块钱减去coins的状态下需要多少步。所以我们从coins最小的储蓄开始执行,通过对比上一步的所有状态,选择其中需要部署最小的作为自己的结果,一直到amount,得到最终结果。

题解

class Solution:def coinChange(self, coins: List[int], amount: int) -> int:answer = [-1 for i in range(amount+1)]             # 初始化所有状态answer[0] = 0                                      # 初始化0,这样coins中的所有元素的步长都为1for i in range(min(coins), amount+1):              # 计算到amount的步长mins = 2**31for j in coins:                                # 对比coins中的所有状态if i - j >= 0 and answer[i - j] > -1:      # 当上一状态合法且存在时,获得最小步数mins = min(answer[i - j] + 1, mins)answer[i] = mins if mins != 2**31 else -1      # 更新当前状态return answer[-1]

124. 二叉树中的最大路径和

二叉树中的 路径 被定义为一条节点序列,序列中每对相邻节点之间都存在一条边。同一个节点在一条路径序列中 至多出现一次 。该路径 至少包含一个 节点,且不一定经过根节点。

路径和 是路径中各节点值的总和。

给你一个二叉树的根节点 root ,返回其 最大路径和

解题思路

这是一道将动态规划运用到树上的一道题,结合了树的搜索,故还需要用到递归的方法进行搜索。

我们对其中任意节点进行思考,如何判断当前节点以下的树节点应当被省略?即会降低全局解的情况,也就是当前节点联通的路径小于0的情况下。那怎么得到当前节点的联通路径呢?即根节点和左子树与右子树中较大的值的和。故我们需要注意,**左子树和右子树的返回结果是必然大于0的,否则就没有链接的必要。**那如果不回调的话,最大联通树应该是当前节点加上左节点加上右节点的值,如果当前值大于已知的最大值,那么就可以替换当前的最大值。

题解

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def maxPathSum(self, root: Optional[TreeNode]) -> int:self.answer = -1000self.maxroot(root)return self.answerdef maxroot(self, root):if root == None:return 0else:left = self.maxroot(root.left)right = self.maxroot(root.right)self.answer = max(self.answer, root.val + left + right)return max(max(left, right) + root.val, 0)

以上就是最基础的动态规划,动态规划的题目难度非常大,后续有精力会详细拆开,深入剖析。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/601929.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

企业出海数据合规:GDPR中的个人数据与非个人数据之区分

GDPR仅适用于个人数据&#xff0c;这意味着非个人数据不在其适用范围内。因此&#xff0c;个人数据的定义是一个至关重要的因素&#xff0c;因为它决定了处理数据的实体是否要遵守该法规对数据控制者规定的各种义务。尽管如此&#xff0c;什么是个人数据仍然是当前数据保护制度…

uniapp微信小程序投票系统实战 (SpringBoot2+vue3.2+element plus ) -小程序首页实现

锋哥原创的uniapp微信小程序投票系统实战&#xff1a; uniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )_哔哩哔哩_bilibiliuniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )共计21条视频…

Docker 镜像以及镜像分层

Docker 镜像以及镜像分层 1 什么是镜像2 Docker镜像加载原理2.1 UnionFs&#xff1a;联合文件系统2.2 Docker镜像加载原理2.3 Docker镜像的特点 3 镜像的分层结构4 可写的容器层 1 什么是镜像 镜像是一种轻量级、可执行的独立软件包&#xff0c;用来打包软件运行环境和基于运行…

数据处理四 基于图像hash进行数据整理(删除重复图片、基于模版查找图片)

一、背景知识 1.1 什么是hash Hash&#xff0c;一般翻译做“散列”&#xff0c;也有直接音译为“哈希”的&#xff0c;基本原理就是把任意长度的输入&#xff0c;通过Hash算法变成固定长度的输出。这个映射的规则就是对应的Hash算法&#xff0c;而原始数据映射后的二进制串就…

程序员必知!命令模式的实战应用与案例分析

命令模式是一种行为设计模式&#xff0c;它将请求封装为对象以实现客户端参数化、请求排队、日志记录及撤销操作&#xff0c;旨在解耦调用者与操作实现者&#xff0c;以智能家居为例&#xff0c;用户通过界面发送命令对象&#xff0c;设备作为接收者执行相应操作&#xff0c;无…

Ubuntu 安装Nginx服务

文章目录 前言一、Nginx安装1. Nginx默认安装2. Nginx指定版本安装3. Nginx验证4. Nginx服务控制4.1 查看服务状态4.2 停止服务4.3 启动服务4.4 重启服务 5. Nginx文件存放目录 二、自己编译Nginx1. 下载源码2. 依赖配置3. 编译 三、Nginx卸载总结 前言 Nginx&#xff08;发音为…

机器学习(四) -- 模型评估(3)

系列文章目录 机器学习&#xff08;一&#xff09; -- 概述 机器学习&#xff08;二&#xff09; -- 数据预处理&#xff08;1-3&#xff09; 机器学习&#xff08;三&#xff09; -- 特征工程&#xff08;1-2&#xff09; 机器学习&#xff08;四&#xff09; -- 模型评估…

探索 OceanBase 中图数据的实现

在数据管理和处理的现代环境中&#xff0c;对能够处理复杂数据结构的复杂数据模型和方法的需求从未如此迫切。图数据的出现以其自然直观地表示复杂关系的独特能力&#xff0c;开辟了数据分析的新领域。 虽然 Neo4j 等成熟的图形数据库为处理图形数据提供了强大的解决方案&…

如何理解Transformer论文中的positional encoding,和三角函数有什么关系?

大家好&#xff0c;我分享交流下这个问题。 Positional Encoding 掏出一张被无数人讲述的架构图。 Transformer 模型中的位置编码&#xff08;Positional Encoding&#xff09;是为了让模型能够考虑单词在句子中的位置。 由于 Transformer 的自注意力&#xff08;Self-Atte…

bat批处理文件_bat注释汇总

文章目录 1、示例&#xff08;直接结合脚本和结果进行理解&#xff09; 1、示例&#xff08;直接结合脚本和结果进行理解&#xff09; %这是一个注释% %这是另一个注释%rem 这是一个注释 rem 这是另一个注释:这是一个注释 ::这是一个注释 :?这是另一个注释if 1 1 ( %这里会执…

伐木工 - 华为OD统一考试

OD统一考试 题解&#xff1a; Java / Python / C 题目描述 一根X米长的树木&#xff0c;伐木工切割成不同长度的木材后进行交易&#xff0c;交易价格为每根木头长度的乘积。规定切割后的每根木头长度都为正整数,也可以不切割&#xff0c;直接拿整根树木进行交易。请问伐木工如…

libexif库介绍

libexif是一个用于解析、编辑和保存EXIF数据的库。它支持EXIF 2.1标准(以及2.2中的大多数)中描述的所有EXIF标签。它是用纯C语言编写的&#xff0c;不需要任何额外的库。源码地址&#xff1a;https://github.com/libexif/libexif &#xff0c;最新发布版本为0.6.24&#xff0c;…

深度学习中的自动化标签转换:对数据集所有标签做映射转换

在机器学习中&#xff0c;特别是在涉及图像识别或分类的项目中&#xff0c;标签数据的组织和准确性至关重要。本文探讨了一个旨在高效转换标签数据的 Python 脚本。该脚本在需要更新或更改类标签的场景中特别有用&#xff0c;这是正在进行的机器学习项目中的常见任务。我们将逐…

基于JavaWeb+SSM+Vue家政项目微信小程序系统的设计和实现

基于JavaWebSSMVue家政项目微信小程序系统的设计和实现 源码获取入口Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 Lun文目录 目录 1系统概述 1 1.1 研究背景 1 1.2研究目的 1 1.3系统设计思想 1 2相关技术 2…

MyBatis 进阶

MyBatis 进阶 复杂CURD返回设置返回类型&#xff1a;resultType返回字典映射&#xff1a;resultMap 多表查询动态SQL使⽤<<if>if>标签<trim\>标签<where\>标签<set\>标签<foreach\>标签 其他打开日志单元测试不污染数据库 复杂CURD 返回设…

Model::unguard()的作用

这是在生成假数据时碰见的&#xff0c;浅查了一下 Model::unguard() 是 Laravel 框架中的一个方法&#xff0c;它的作用是取消对 Eloquent 模型的属性赋值的安全性保护。 在默认情况下&#xff0c;Laravel 的 Eloquent 模型会对属性赋值做一些安全性检查&#xff0c;例如防止…

Java:IO流详解

文章目录 基础流1、IO概述1.1 什么是IO1.2 IO的分类1.3 顶级父类们 2、字节流2.1 一切皆为字节2.2 字节输出流 OutputStream2.3 FileOutputStream类2.3.1 构造方法2.3.2 写出字节数据2.3.3 数据追加续写2.3.4 写出换行 2.4 字节输入流 InputStream2.5 FileInputStream类2.5.1 构…

LeetCode 225.用队列实现栈(详解) ૮꒰ ˶• ༝ •˶꒱ა

题目详情&#xff1a; 思路&#xff1a;1.定义两个队列用于存储栈的数据&#xff0c;其中一个为空。 2.对我们定义的栈进行入数据&#xff0c;就相当于对不为空的队列进行入数据。 3.对我们定义的栈进行删除&#xff0c;相当于取出不为空的队列中的数据放到为空的队列中&#x…

Python基础入门第八课笔记(自定义函数 lambda)

什么时候用lambda表达式&#xff1f; 当函数有一个返回值&#xff0c;且只有一句代码&#xff0c;可以用lambda简写。 2、lanbda语法 lambda 形参 : 表达式 注意&#xff1a; 1、形参可以省略&#xff0c;函数的参数在lambda中也适用 2、lambda函数能接收任何数量的参数但只能…

MySQL之视图内连接、外连接、子查询案例

目录 一.视图 1.1 含义 1.2 操作 二.案例 三.思维导图 一.视图 1.1 含义 虚拟表&#xff0c;查询方面和普通表一样使用。 1.2 操作 1.创建视图&#xff1a; create or replace view 视图名 as 查询语句&#xff1b; 2.视图的修改&#xff1a; 方式1 create or replace view …