机器学习(四) -- 模型评估(3)

系列文章目录

机器学习(一) -- 概述

机器学习(二) -- 数据预处理(1-3)

机器学习(三) -- 特征工程(1-2)

机器学习(四) -- 模型评估(1-4)

未完待续……


目录

机器学习(四) -- 模型评估(1)

机器学习(四) -- 模型评估(2)

---

系列文章目录

前言

四、 回归模型评估指标

1、均方误差(Mean Squared Error,MSE)

2、***均方根误差(Root Mean Squared Error,RMSE)

3、***均方对数误差(Mean Squared Log Error,MSLE)

4、平均绝对误差(Mean Absolute Error,MAE)

5、***平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)

6、决定系数(R2,R-square)

7、***校正决定系数(Adjusted R-square)


前言

tips:这里只是总结,不是教程哈。

“***”开头的是给好奇心重的宝宝看的,其实不太重要可以跳过。

此处以下所有内容均为暂定,因为我还没找到一个好的,让小白(我自己)也能容易理解(更系统、嗯应该是宏观)的讲解顺序与方式。

第一文主要简述了一下机器学习大致有哪些东西(当然远远不止这些),对大体框架有了一定了解。接着我们根据机器学习的流程一步步来学习吧,掐掉其他不太用得上我们的步骤,精练起来就4步(数据预处理,特征工程,训练模型,模型评估),其中训练模型则是我们的重头戏,基本上所有算法也都是这一步,so,这个最后写,先把其他三个讲了,然后,在结合这三步来进行算法的学习,兴许会好点(个人拙见)。


衡量模型泛化能力的评价标准就是性能度量(模型评估指标、模型评价标准),而针对不同的任务有不同的评价指标。按照数据集的目标值不同,可以把模型评估分为分类模型评估、回归模型评估和聚类模型评估。

四、 回归模型评估指标

均方误差(MSE)、均方根误差(RMSE)、均方对数误差(MSLE)、
平均绝对误差(MAE)​​​​​​、平均绝对百分比误差(MAPE)、
决定系数(R2,R-square)、校正决定系数(Adjusted R-square)

1、均方误差(Mean Squared Error,MSE)

回归任务最常用的性能度量就是均方误差。是预测数据和原始数据对应点误差的平方和的均值。越小越好。

公式

均方误差存在一个明显的缺陷,
假设,现在有三个样本,它们的预测值与真实值的差分别为 3、4、5,通过均方误差的计算公式,我们可以分别计算出这三个样本的误差为 9、16 和 25;第三个样本的误差等于前两个样本的误差和,也就是说样本的预测值离真实值越远,误差也越大,且增长幅度越来越大。

模型为了降低误差,势必会想办法优先让偏差最大的样本尽可能靠近真实值。换言之,偏差越大的样本对模型的影响也越大,如果这个样本是噪声,那么这对模型的精度产生重大负面影响。简单地说,均方误差对噪声不鲁棒。【鲁棒性(robustness)是指系统或者算法在不同的情况下,仍能够保持稳定和可靠的能力。

就像我们再【数据预处理(2)的2.1.3、3σ法则】中遇到的情况一样噪声数据影响过大。

API

from sklearn.metrics import mean_squared_error

我们用波士顿房价数据集为例,模型选择决策树算法,来测试。

import numpy as np
from sklearn.datasets import load_boston
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import train_test_split# 引入数据集
boston = load_boston()# 划分数据集
x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, test_size=0.3, random_state=134)#模型训练
model = DecisionTreeRegressor()
model.fit(x_train, y_train)

from sklearn.metrics import mean_squared_error# 均方误差
mean_squared_error(y_test, model.predict(x_test))

 

2、***均方根误差(Root Mean Squared Error,RMSE)

均方误差开根号。

和MSE一样,对异常点(outliers)较敏感,如果回归器对某个点的回归值很不理性,那么它的误差则较大,从而会对RMSE的值有较大影响,即平均值是非鲁棒的。

公式

代码

代码也很简单,上面那个开个平方就好了。 

# 均方根误差
np.sqrt(mean_squared_error(y_test, model.predict(x_test)))

3、***均方对数误差(Mean Squared Log Error,MSLE)

公式

代码

from sklearn.metrics import mean_squared_log_error# 均方对数误差
mean_squared_log_error(y_test, model.predict(x_test))

4、平均绝对误差(Mean Absolute Error,MAE)

公式

代码

from sklearn.metrics import mean_absolute_error# 平均绝对误差
mean_absolute_error(y_test, model.predict(x_test))

5、***平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)

公式

代码

from sklearn.metrics import mean_absolute_percentage_error# 平均绝对百分比误差
mean_absolute_percentage_error(y_test, model.predict(x_test))

6、决定系数(R2,R-square)

反映因变量的全部变异能通过回归关系被自变量解释的比例。拟合优度越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比越高,观察点在回归直线附近越密集。
决定系数R2越高,越接近于1,模型的拟合效果就越好。

公式:S^2是方差

代码

from sklearn.metrics import r2_score# 决定系数
r2_score(y_test, model.predict(x_test))

7、***校正决定系数(Adjusted R-square)

公式

代码

r2=r2_score(y_test, model.predict(x_test))n, p = x_test.shape
adjusted_r2 = 1 - ((1 - r2) * (n - 1)) / (n - p - 1)
adjusted_r2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/601919.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

通货紧缩,通货膨胀

目录 通货紧缩 通货膨胀 通货紧缩 是一个与通货膨胀相对应的经济学概念,是由货币供给量相对于经济增长和劳动生产率提高等要素减少而引致的有效需求严重不足 一般物价水平持续下跌,货币供给量持续下降和经济衰退的现象。当市场上流通的货币减少&…

探索 OceanBase 中图数据的实现

在数据管理和处理的现代环境中,对能够处理复杂数据结构的复杂数据模型和方法的需求从未如此迫切。图数据的出现以其自然直观地表示复杂关系的独特能力,开辟了数据分析的新领域。 虽然 Neo4j 等成熟的图形数据库为处理图形数据提供了强大的解决方案&…

Python从入门到网络爬虫(模块详解)

模块 我们知道,函数和类都是可以重复调用的代码块。在程序中使用位于不同文件的代码块的方法是:导入 (import) 该对象所在的模块 (mudule)。当程序变得越来越大时,将程序的不同部分根据不同分类方法保存在不同文件中通常会更加方便。 导入模…

python抓取异步数据(加载更多类型的),并下载图片,保存到文件夹,实例

源码: {"subjects":[{"episodes_info":"","rate":"8.8","cover_x":3000,"title":"奥本海默","url":"https:\/\/movie.douban.com\/subject\/35593344\/","playabl…

hydra爆破

导语 Hydra 是一个用于暴力破解登录凭据的网络安全工具。它可以通过尝试多个用户名和密码组合来攻击目标系统,以获得未经授权的访问权限。 Hydra 支持多种协议和服务,包括常见的 SSH、FTP、Telnet、HTTP、SMTP 等。它可以通过使用字典文件或生成密码的模式进行强制破解。可以…

如何理解Transformer论文中的positional encoding,和三角函数有什么关系?

大家好,我分享交流下这个问题。 Positional Encoding 掏出一张被无数人讲述的架构图。 Transformer 模型中的位置编码(Positional Encoding)是为了让模型能够考虑单词在句子中的位置。 由于 Transformer 的自注意力(Self-Atte…

bat批处理文件_bat注释汇总

文章目录 1、示例(直接结合脚本和结果进行理解) 1、示例(直接结合脚本和结果进行理解) %这是一个注释% %这是另一个注释%rem 这是一个注释 rem 这是另一个注释:这是一个注释 ::这是一个注释 :?这是另一个注释if 1 1 ( %这里会执…

Golang 切片

前言 在Go语言中,切片是一个引用类型,它提供了对数组的动态窗口。切片并不存储任何数据,它只是描述了底层数组中的一个片段。切片的定义包括三个部分:指向数组的指针、切片的长度和切片的容量 基本使用 声明切片:声…

Django在urls.py利用函数path()配置路由时传递参数给调用的视图函数的方法

01-单个参数的传递 问:在urls.py利用函数path()配置路由时能不能传递一些参数给调用的视图函数?因为我有很多路由调用的其实是同一个视图函数,所以希望能传递一些额外的参数。比如路由的PATH信息如果能传递就好了。 答:在Django中…

伐木工 - 华为OD统一考试

OD统一考试 题解: Java / Python / C 题目描述 一根X米长的树木,伐木工切割成不同长度的木材后进行交易,交易价格为每根木头长度的乘积。规定切割后的每根木头长度都为正整数,也可以不切割,直接拿整根树木进行交易。请问伐木工如…

MySQL 日期比较

MySQL日期格式比较常用的两个函数是DATEDIFF()和TIMESTAMPDIFF()。 DATEDIFF SELECT DATEDIFF(2023-12-31 23:59:59, 2023-12-30); # 1SELECT DATEDIFF(2023-11-30 23:59:59, 2023-12-31); # -31第一个参数减去第二个参数得到的天数。 TIMESTAMPDIFF SELECT TIMESTAMPDIFF(…

libexif库介绍

libexif是一个用于解析、编辑和保存EXIF数据的库。它支持EXIF 2.1标准(以及2.2中的大多数)中描述的所有EXIF标签。它是用纯C语言编写的,不需要任何额外的库。源码地址:https://github.com/libexif/libexif ,最新发布版本为0.6.24,…

计算圆弧的起始角度、终止角度和矩形信息并使用drawArc绘制圆弧

Qt中常用绘制圆弧的库函数: //函数原型 void QPainter::drawArc(const QRectF &rectangle, int startAngle, int spanAngle)Qt规定1约占16个像素,比如一个完整的圆等于360度,对应的像素角度就是 5760度(16 * 360)…

深度学习中的自动化标签转换:对数据集所有标签做映射转换

在机器学习中,特别是在涉及图像识别或分类的项目中,标签数据的组织和准确性至关重要。本文探讨了一个旨在高效转换标签数据的 Python 脚本。该脚本在需要更新或更改类标签的场景中特别有用,这是正在进行的机器学习项目中的常见任务。我们将逐…

基于JavaWeb+SSM+Vue家政项目微信小程序系统的设计和实现

基于JavaWebSSMVue家政项目微信小程序系统的设计和实现 源码获取入口Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 Lun文目录 目录 1系统概述 1 1.1 研究背景 1 1.2研究目的 1 1.3系统设计思想 1 2相关技术 2…

如何使用RESTful API构建 web 应用程序

RESTful API 是一种设计风格,用于构建可扩展、灵活和可维护的 web 应用程序。它是一种基于 HTTP 协议的架构风格,旨在提供一组规范和约束,以便客户端和服务器之间的通信更加简单和可预测。 RESTful API 通过使用 HTTP 动词来定义资源的操作&…

【DevOps-01]】DevOps介绍

一、简要描述 DevOps:Development & Operations的缩写,也就是开发&运维 DevOps是一个不断提高效率并且持续不断工作的过程。 核心:简化Dev和Ops团队之间的流程,使整体软件开发过程更快速。 DevOps定义: DevOps 强调的是高效组织团队之间如何通过自动化的工具协作和…

数据结构OJ实验16-选择排序与堆排序与归并排序

A. DS排序--简单选择排序 题目描述 给出一个数据序列,使用简单选择排序算法进行升序排序。 输入 第一行输入t,表示有t个测试示例 第二行输入n,表示第一个示例有n个数据(n>1) 第三行输入n个数据,都是正整数,数据…

MyBatis 进阶

MyBatis 进阶 复杂CURD返回设置返回类型&#xff1a;resultType返回字典映射&#xff1a;resultMap 多表查询动态SQL使⽤<<if>if>标签<trim\>标签<where\>标签<set\>标签<foreach\>标签 其他打开日志单元测试不污染数据库 复杂CURD 返回设…

docker 一些有用的操作

创建一个网络组 docker network create xxx(网络名称) docker network inspect xxx 网络的配置信息 docker network list 所有网络的列表docker部署 1 编写Dockerfile文件 2 打包镜像 docker build -t 镜像名 . 3 运行镜像 docker run -d -p 5001:5001 --net 网络名称 --na…