Python爬虫武汉市二手房价格数据采集分析:Linear Regression、XGBoost和LightGBM|代码分享...

全文链接:http://tecdat.cn/?p=31958

分析师:Yan Liu

我国有大量的资金都流入了房地产行业,同时与其他行业有着千丝万缕的联系,可以说房地产行业对推动我国深化改革、经济发展、工业化和城市化具有不可磨灭的作用点击文末“阅读原文”获取爬虫代码)。

目前对于二手房交易价格的预测主要考虑的是房屋价格受宏观因素的影响,如国家政策、经济发展水平、人口数量等,并据此推测地区房价及其走势,很少有从微观的角度来准确预测每间房屋的价格。

相关视频

解决方案

任务/目标

从区位特征、房屋属性和交易指标3个角度,选取包括所属区域、建筑面积、楼层高度、周边银行数量、学校数量、电影院数量等在内的多维度特征,帮助客户来预测二手房的挂牌价格,实现基于数据的科学决策,做到一房一价的精准预测。

数据 获取

(1)在链家网上,武汉市区域被划分为15个区,共107个街道,每个页面展示30条房屋数据,通过翻页最多可以达到100页,即3000条数据。为了能尽可能保证抓取到链家上所有的数据查看文末了解爬虫代码免费获取方式,根据深度优先算法思想,采用先遍历区域,再遍历街道的遍历思路来设计爬虫。

ea1c3e0f0edfde0e4f537fc696b402ec.png

(2)周边配套设施,房屋所在小区的经纬度数据可以从网页源代码中获得,其关键词为:resblockPosition。通过调用百度地图API可以获得上图所示的周边配套设施数量,涵盖了交通、教育、医疗、购物、生活、文娱共6大类,19个特征变量。

57456c61a774b427d8639c32b5a4ef84.png

特征 预处理

(1)缺失值处理

通过对数据缺失值统计发现有8个变量存在缺失值:

6ab691bf113aa457dc5ca59db90f8bc6.png

分别使用剔除法、填充法来处理缺失值。houseStructure共有四种类型:平层、复式、错层、跃层。考虑到位于同一小区的房屋,其房屋类型大多相同,故采用此方法对缺失值进行填充:对于缺失houseStructure的房屋A,根据community_id(所属小区ID)统计出与A同小区的所有房屋,再统计出这些房屋的houseStructure的众数对A进行填充。buildingTypes、liftEquip和premisesOwnership采用和houseStructure同样的填充方法。propertyFee数据的缺失选择使用均值填充法。

分类变量的处理

对于分布极不均衡的分类变量予以剔除,对于其他分类变量做硬编码或独热编码处理

数值变量的处理

buildingTime:建成年代,数据格式均为年份(如:2018),处理方法为构造新的变量YearsDelta,其值等于2020年与其差值。

通过三σ法则剔除异常值。周边配套设施包含了一公里内的地铁站数量、幼儿园数量、医院数量等19个数值变量,通过绘制分布直方图发现不少变量的分布存在偏态。

424bf36bff2b0206b09e8b97bc251213.png

分别予以剔除或是将数值变量转换为二分类变量。

数据变换

通过绘制变量分布图,发现totalBuildings、totalHouses、totalDeals和Yearsdelta呈现出较为明显的右偏分布,而呈现偏态分布的数据是不利于最终所构建模型的效果的,因此需要对这几个变量进行纠偏处理,采用的方法为Johnson变换。

932a5d2b8ff16926d39f7764c14a6359.png

上述变量经过此方法处理前后分布对比图如下,显然,经过处理后的变量分布已近似于正态分布。

1751cd8fd85c7639637ea5b5680958cc.png


点击标题查阅往期内容

b35740fc0826825503b8a37d9330d660.jpeg

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析

outside_default.png

左右滑动查看更多

outside_default.png

01

f5853a5dde5fb3550414d3dd0b2ebc90.png

02

5000959d44351e9c25d4add3474ce0c7.png

03

3b8666d88048b2bae4d2247dbab00418.png

04

b2334047ff800d99e192a59708a7e371.png

建模

分别建立Linear Regression模型、XGBoost模型和LightGBM模型,通过比较模型性能(评价指标使用MSE、MAE、R square)优劣,选出效果最佳的预测模型。

XGBoost和LightGBM模型的参数很多,参数取值不同,模型的性能也会有差别,因此需要对其主要参数进行调优,找出最佳参数组合。常用的调参方法为GridSearchCV(网络搜索法)和RandomizedSearchCV(随机搜索法),采用GridSearchCV进行参数调优。

XGBoost模型调优后的参数:

216bd1e7a8ee3baaf8d11074dedc861d.png

LightGBM模型调优后的参数:

b17351e03927d749fad7f12fd7727fa5.png

模型性能对比

房价预测问题是一个回归问题,属于监督学习范畴。对于所得到的模型,其对未知数据的泛化能力直接决定了模型的性能优劣。因此为了对比不同模型对于未知数据的表现效果,采用十折交叉验证进行模型验证。

三种模型的10折交叉验证在测试集性能评估:

013c109d092c2cf06dd0e33e37a722e8.png

三种模型在测试集上预测情况对比:

2510676f87efd7da24a856337b0b50b5.png

调参后的XGBoost模型和LightGBM模型训练出的各个特征的重要性打分排序对比:

a42c09b50019066fc38ff0ba014d5f3e.png

可以看出,buildingArea特征重要性得分最高,与小区情况有关的5个变量得分都排在前列;与房屋属性相关的变量,如houseFloor、houseDecoration等,得分均位于中游,对房价的影响不大;属于房屋周边设施的变量,如subwayStation、park、stadium等,得分普遍都很低,对房价影响很小。

从区位特征、房屋属性和交易指标3个角度,从链家网上通过Python网络爬虫有针对性的获取武汉市二手房成交记录中的特征数据。对原始数据通过一系列预处理,运用机器学习中的XGBoost算法、LightGBM算法和GridSearchCV算法,对处理后的数据进行建模与参数调优。将两种模型在测试集上的预测效果与训练好的Linear Regression模型进行对比,XGBoost和LightGBM在预测效果上有着显著优势。通过XGBoost和LightGBM模型学习后的特征重要性得分可知,在三类因素中,房屋建筑面积对房价的影响最大,反映房屋所属小区情况的变量重要性得分均排在前列,而其他房屋自身属性、周边配套设施的变量对价格影响较小,与大众的直观感受基本吻合。

数据获取

在公众号后台回复“爬虫代码”,可免费获取完整爬虫代码。

723f9b9c86b9fd3cfe7fa0c8d15170d3.jpeg

本文中分析的爬虫代码分享到会员群,扫描下面二维码即可加群!

49dd513534bf3d2613dbdd90103e7e84.png

关于分析师

e76c36a1ca337524bca084104eead935.png

在此对Yan Liu对本文所作的贡献表示诚挚感谢,他擅长数据采集、机器学习、深度学习。

fcb9f67f2ac777fa43f6b0349fe10390.jpeg

点击文末“阅读原文”

获取全文完整代码数据资料。

本文选自《Python互联网大数据的武汉市二手房价格分析:Linear Regression模型、XGBoost模型和LightGBM模型》。

0fa54d65f054c0ddace6dc01fa75b67e.jpeg

3a661cc7b648e3afeb9d997f45b6396e.png

点击标题查阅往期内容

Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类

RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测

结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析

深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据

用PyTorch机器学习神经网络分类预测银行客户流失模型

PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据

Python用Keras神经网络序列模型回归拟合预测、准确度检查和结果可视化

Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析

R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告

R语言深度学习:用keras神经网络回归模型预测时间序列数据

Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类

R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST)

MATLAB中用BP神经网络预测人体脂肪百分比数据

Python中用PyTorch机器学习神经网络分类预测银行客户流失模型

R语言实现CNN(卷积神经网络)模型进行回归数据分析

SAS使用鸢尾花(iris)数据集训练人工神经网络(ANN)模型

【视频】R语言实现CNN(卷积神经网络)模型进行回归数据分析

Python使用神经网络进行简单文本分类

R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析

R语言基于递归神经网络RNN的温度时间序列预测

R语言神经网络模型预测车辆数量时间序列

R语言中的BP神经网络模型分析学生成绩

matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类

R语言实现拟合神经网络预测和结果可视化

用R语言实现神经网络预测股票实例

使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测

python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译

用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类

8f7991ad0577fdb278482f64368cbcd3.png

cdc2e4664d1007b5f75e0fbe6255018d.jpeg

46c634f24d5a83af6146b7b3633e5607.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/59975.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java八股文面试[java基础]——字节码

字节码技术应用 字节码技术的应用场景包括但不限于AOP,动态生成代码,接下来讲一下字节码技术相关的第三方类库,第三方框架的讲解是为了帮助大家了解字节码技术的应用方向,文档并没有对框架机制进行详细分析,有兴趣的可…

为什么海外专利申请含金量高?

为什么海外专利申请含金量高?通常,具有较大市场价值的发明才需要在国外申请专利保护,专利的海外申请数量是衡量经济和创新价值的重要指标,即专利全球性指标。我国海外专利申请量比重过低,说明专利的创造性未达到国外专…

注解和class对象和mysql

注解 override 通常是用在方法上的注解表示该方法是有重写的 interface 表示一个注解类 比如 public interface override{} 这就表示是override是一个注解类 target 修饰注解的注解表示元注解 deprecated 修饰某个元素表示该元素已经过时了 1.不代表该元素不能用了&…

查漏补缺 - 构造函数,原型,this,原型链,继承

目录 1,构造函数2,原型3,this4,原型链1,特点2,Object.prototype.toString()3,instanceof 运算符4,Object.getPrototypeOf()5,创建空原型对象6,面试题 5&#…

Vue2向Vue3过度核心技术自定义指令

目录 1 自定义指令1.指令介绍2.自定义指令3.自定义指令语法4.指令中的配置项介绍5.代码示例6.总结 2 自定义指令-指令的值1.需求2.语法3.代码示例 3 自定义指令-v-loading指令的封装1.场景2.需求3.分析4.实现5.准备代码 1 自定义指令 1.指令介绍 内置指令:v-html、v…

【无需公网IP】在树莓派上搭建Web站点

目录 1.概述 2.使用 Raspberry Pi Imager 安装 Raspberry Pi OS 3.设置 Apache Web 服务器 3.1测试 web 站点 3.2安装静态样例站点 3.3将web站点发布到公网 3.4安装 Cpolar 3.5cpolar进行token认证 3.6生成cpolar随机域名网址 3.7生成cpolar二级子域名 3.8将参数保存…

基于Android的课程教学互动系统 微信小程序uniapp

教学互动是学校针对学生必不可少的一个部分。在学校发展的整个过程中,教学互动担负着最重要的角色。为满足如今日益复杂的管理需求,各类教学互动程序也在不断改进。本课题所设计的springboot基于Android的教学互动系统,使用SpringBoot框架&am…

接口幂等性设计的最佳实现

一、什么是幂等 二、为什么需要幂等 三、接口超时了,到底如何处理? 四、如何设计幂等 全局的唯一性ID 幂等设计的基本流程 五、实现幂等的8种方案 selectinsert主键/唯一索引冲突 直接insert 主键/唯一索引冲突 状态机幂等 抽取防重表 token令牌 悲观锁…

【Go 基础篇】Go语言结构体基本使用

在Go语言中,结构体是一种重要的数据类型,用于定义和组织一组不同类型的数据字段。结构体允许开发者创建自定义的复合数据类型,类似于其他编程语言中的类。本文将深入探讨Go语言中结构体的定义、初始化、嵌套、方法以及与其他语言的对比&#…

系统学习Linux-ELK日志收集系统

ELK日志收集系统集群实验 实验环境 角色主机名IP接口httpd192.168.31.50ens33node1192.168.31.51ens33noed2192.168.31.53ens33 环境配置 设置各个主机的ip地址为拓扑中的静态ip,并修改主机名 #httpd [rootlocalhost ~]# hostnamectl set-hostname httpd [root…

Jupyter installation Tutorial

文章目录 1. 面向的系统2. 什么是Jupyter?3. 安装Python环境4. 安装Jupyter notebook5. Jupyter的启动和配置6. Jupyter的使用技巧7. conclusion参考文献 1. 面向的系统 Windows安装 2. 什么是Jupyter? Jupyter Notebook是一个开源的Web应用程序&…

Qt6.5安装教程——国内源

为什么离线包没了? Qt6开始非商业授权下,不再提供离线安装方式的exe,但源码安装费时费力,所以推荐安装方式已经为在线组件安装方式,包括vs2022、Qt在线安装工具已经成为开发工具新的安装趋势。 Qt是不是要放弃开源&…

【LeetCode: 56. 合并区间+贪心+双指针+标识+模拟】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

C#,《小白学程序》第六课:队列(Queue)的应用,《实时叫号系统》

医院里面常见的叫号系统怎么实现的&#xff1f; 1 文本格式 /// <summary> /// 下面定义一个新的队列&#xff0c;用于演示《实时叫号系统》 /// </summary> Queue<Classmate> q2 new Queue<Classmate>(); /// <summary> /// 《小白学程序》第…

CentOS 8 安装 Code Igniter 4

在安装好LNMP运行环境基础上&#xff0c;将codeigniter4文件夹移动到/var/nginx/html根目录下&#xff0c;浏览器地址栏输入IP/codeigniter/pulbic 一直提示&#xff1a; Cache unable to write to "/var/nginx/html/codeigniter/writable/cache/". 找了好久&…

图像颜色空间转换

目录 1.图像颜色空间介绍 RGB 颜色空间 2.HSV 颜色空间 3.RGBA 颜色空间 2.图像数据类型间的互相转换convertTo() 3.不同颜色空间互相转换cvtColor() 4.Android JNI demo 1.图像颜色空间介绍 RGB 颜色空间 RGB 颜色空间是最常见的颜色表示方式之一&#xff0c;其中 R、…

SQL注入之报错注入

文章目录 报错注入是什么&#xff1f;报错注入获取cms账号密码成功登录 报错注入是什么&#xff1f; 在注入点的判断过程中&#xff0c;发现数据库中SQL 语句的报错信息&#xff0c;会显示在页面中&#xff0c;因此可以利用报错信息进行注入。 报错注入的原理&#xff0c;就是在…

jwt安全问题

文章目录 jwt安全问题jwt简介jwt组成headerpayloadsignature 潜在漏洞空加密算法web346 密钥爆破web348 敏感信息泄露web349 **修改算法RS256为HS256**web350 jwt安全问题 jwt简介 JWT的全称是Json Web Token&#xff0c;遵循JSON格式&#xff0c;跨域认证解决方案&#xff0…

Vue.js2+Cesium1.103.0 十、加载 Three.js

Vue.js2Cesium1.103.0 十、加载 Three.js Demo ThreeModel.vue <template><divid"three_container"class"three_container"/> </template><script> /* eslint-disable eqeqeq */ /* eslint-disable no-unused-vars */ /* eslint…

unity VS无法进行断点调试

有时候我们的VS无法进行断点调试&#xff0c;报错如下&#xff1a; 原因是&#xff1a;开启了多个项目&#xff0c;vs无法找到调式项目 解决&#xff1a;点击菜单栏--调试----附加unity调试程序 会弹出一个框&#xff0c;然后选择你要调试的项目 即可