MR实战:词频统计

文章目录

  • 一、实战概述
  • 二、提出任务
  • 三、完成任务
    • (一)准备数据
      • 1、在虚拟机上创建文本文件
      • 2、上传文件到HDFS指定目录
    • (二)实现步骤
      • 1、创建Maven项目
      • 2、添加相关依赖
      • 3、创建日志属性文件
      • 4、创建词频统计映射器类
      • 5、创建词频统计归并器类
      • 6、创建词频统计驱动器类
      • 7、启动应用,查看结果
  • 四、实战总结

一、实战概述

  • 本实战演练旨在利用Hadoop MapReduce框架在虚拟环境中执行一个简单的词频统计任务。首先,在master节点上创建了一个包含多个单词行的文本文件words.txt,并将该文件上传至HDFS中的指定目录/wordcount/input

  • 在集成开发环境IntelliJ IDEA中,我们创建了一个名为MRWordCount的Maven项目,并引入了Apache Hadoop 3.3.4版本的客户端依赖和JUnit测试框架。为了便于日志管理,添加了log4j.properties配置文件来定义日志输出格式及位置。

  • 接下来,实现了两个关键类:WordCountMapperWordCountReducerWordCountMapper继承自Mapper接口,负责读取输入文本文件中的每一行内容,将每行按空格分割成单词,并为每个单词生成一个键值对(<单词, 1>),以便后续计数处理。而WordCountReducer则继承自Reducer接口,它接收Mapper阶段产生的所有相同单词的键及其对应的次数,进行合并统计并输出格式化的"(单词, 出现次数)"键值对。

  • 最后,通过WordCountDriver驱动类完成整个MapReduce作业的设置与执行。此类初始化Hadoop Configuration对象、设置Job参数(包括Mapper和Reducer类、键值类型等)、指定了HDFS上的输入输出路径,并最终提交作业至集群执行。作业完成后,WordCountDriver还会从HDFS上读取结果并显示到控制台。

  • 经过上述步骤,当运行WordCountDriver主类时,程序将会读取HDFS上的输入文件,运用MapReduce模型进行分布式计算,最终得到期望的词频统计结果,并在控制台展示出来。这个实例展示了如何使用Hadoop MapReduce进行大规模数据处理的实际操作流程。

二、提出任务

  • 单词文件 - words.txt
hello hadoop world
hello hive world
hello hbase world
hadoop hive hbase
I love hadoop and hive
  • 使用MR框架,进行词频统计,输出如下结果
    在这里插入图片描述

三、完成任务

(一)准备数据

1、在虚拟机上创建文本文件

  • 在master虚拟机上创建words.txt文件
    在这里插入图片描述

2、上传文件到HDFS指定目录

  • 创建/wordcount/input目录,执行命令:hdfs dfs -mkdir -p /wordcount/input
    在这里插入图片描述

  • 将文本文件words.txt,上传到HDFS的/wordcount/input目录
    在这里插入图片描述

(二)实现步骤

  • 说明:集成开发环境IntelliJ IDEA版本 - 2022.3

1、创建Maven项目

  • Maven项目 - MRWordCount,设置了JDK版本 - 1.8,组标识 - net.huawei.mr
    在这里插入图片描述

  • 单击【Create】按钮,得到初始化项目
    在这里插入图片描述

2、添加相关依赖

  • pom.xml文件里添加hadoop-clientjunit依赖
    在这里插入图片描述
<dependencies>                                   <!--hadoop客户端-->                             <dependency>                                 <groupId>org.apache.hadoop</groupId>     <artifactId>hadoop-client</artifactId>   <version>3.3.4</version>                 </dependency>                                <!--单元测试框架-->                                <dependency>                                 <groupId>junit</groupId>                 <artifactId>junit</artifactId>           <version>4.13.2</version>                </dependency>                                
</dependencies>                                                  
  • 刷新项目依赖
    在这里插入图片描述

3、创建日志属性文件

  • resources目录里创建log4j.properties文件
    在这里插入图片描述
log4j.rootLogger=ERROR, stdout, logfile
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/wordcount.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

4、创建词频统计映射器类

  • 创建net.huawei.mr包,在包里创建WordCountMapper
    在这里插入图片描述
package net.huawei.mr;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.io.Text;
import java.io.IOException;/*** 功能:词频统计映射器类* 作者:华卫* 日期:2024年01月05日*/
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {@Overrideprotected void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException {// 获取行内容String line = value.toString();// 按空格拆分成单词数组String[] words = line.split(" ");// 遍历单词数组,生成输出键值对for (String word : words) {context.write(new Text(word), new IntWritable(1));}}
}
  • 该代码定义了一个Hadoop MapReduce作业中的词频统计Mapper类(WordCountMapper),继承自Mapper<LongWritable, Text, Text, IntWritable>。它接收输入键值对(LongWritable行偏移量,Text行内容),按空格分割每行文本为单词,并为每个单词输出一个键值对到上下文(<Text: 单词, IntWritable: 1>),用于后续Reducer进行计数汇总。

  • 映射任务与归并任务示意图
    在这里插入图片描述

5、创建词频统计归并器类

  • net.huawei.mr包里创建WordCountReducer
    在这里插入图片描述
package net.huawei.mr;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;/*** 功能:词频统计归并类* 作者:华卫* 日期:2024年01月05日*/
public class WordCountReducer extends Reducer<Text, IntWritable, Text, NullWritable> {@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Context context)throws IOException, InterruptedException {// 定义键(单词)出现次数int count = 0;// 遍历输入值迭代器for (IntWritable value : values) {count = count + value.get(); // 针对此案例,可以写为count++;}// 生成新的键,格式为(word,count)String newKey = "(" + key.toString() + "," + count + ")";// 输出新的键值对context.write(new Text(newKey), NullWritable.get());}
}
  • 该WordCountReducer类是Hadoop MapReduce中用于词频统计的归约器,继承自Reducer<Text, IntWritable, Text, NullWritable>。在reduce方法中,它接收一个单词键(Text类型)及其对应的出现次数迭代器(IntWritable类型)。通过遍历所有次数并将它们累加到变量count上,然后将单词与统计结果拼接成"(word,count)"格式的新键,并使用NullWritable作为值输出,从而实现单词及其词频的合并统计。

6、创建词频统计驱动器类

  • net.huawei.mr包里,创建WordCountDriver
    在这里插入图片描述
package net.huawei.mr;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.net.URI;/*** 功能:词频统计驱动器类* 作者:华卫* 日期:2024年01月05日*/
public class WordCountDriver {public static void main(String[] args) throws Exception {// 创建配置对象Configuration conf = new Configuration();// 设置客户端使用数据节点主机名属性conf.set("dfs.client.use.datanode.hostname", "true");// 获取作业实例Job job = Job.getInstance(conf);// 设置作业启动类job.setJarByClass(WordCountDriver.class);// 设置Mapper类job.setMapperClass(WordCountMapper.class);// 设置map任务输出键类型job.setMapOutputKeyClass(Text.class);// 设置map任务输出值类型job.setMapOutputValueClass(IntWritable.class);// 设置Reducer类job.setReducerClass(WordCountReducer.class);// 设置reduce任务输出键类型job.setOutputKeyClass(Text.class);// 设置reduce任务输出值类型job.setOutputValueClass(NullWritable.class);// 定义uri字符串String uri = "hdfs://master:9000";// 创建输入目录Path inputPath = new Path(uri + "/wordcount/input");// 创建输出目录Path outputPath = new Path(uri + "/wordcount/output");// 获取文件系统FileSystem fs = FileSystem.get(new URI(uri), conf);// 删除输出目录(第二个参数设置是否递归)fs.delete(outputPath, true);// 给作业添加输入目录(允许多个)FileInputFormat.addInputPath(job, inputPath);// 给作业设置输出目录(只能一个)FileOutputFormat.setOutputPath(job, outputPath);// 等待作业完成job.waitForCompletion(true);// 输出统计结果System.out.println("======统计结果======");FileStatus[] fileStatuses = fs.listStatus(outputPath);for (int i = 1; i < fileStatuses.length; i++) {// 输出结果文件路径System.out.println(fileStatuses[i].getPath());// 获取文件系统数据字节输入流FSDataInputStream in = fs.open(fileStatuses[i].getPath());// 将结果文件显示在控制台IOUtils.copyBytes(in, System.out, 4096, false);}}
}
  • 该WordCountDriver类是Hadoop MapReduce框架中用于执行词频统计任务的驱动类。
  1. 初始化配置:首先创建一个Configuration对象,设置客户端使用数据节点主机名属性以便正确解析路径。

  2. 构建作业实例:通过Job.getInstance(conf)获取一个MapReduce作业实例,并将当前类(WordCountDriver)作为作业启动类,这样Hadoop在运行时能识别到主程序入口。

  3. 配置Mapper和Reducer:分别指定Map阶段使用的类为WordCountMapper,Reduce阶段使用的类为WordCountReducer。同时设定Map阶段输出键值对类型为TextIntWritable,Reduce阶段输出键值对类型也为TextNullWritable

  4. 定义文件系统URI:设置HDFS地址为hdfs://master:9000,并基于此URI创建输入目录(/wordcount/input)和输出目录(/wordcount/output)。

  5. 文件系统操作:连接到HDFS文件系统,删除已存在的输出目录以准备新的计算结果,然后向作业添加输入目录和设置输出目录。

  6. 提交并监控作业:调用job.waitForCompletion(true)方法提交作业并等待其完成。当作业完成后,会返回一个布尔值表示作业是否成功执行。

  7. 读取并显示结果:作业结束后,列出输出目录下的所有文件,遍历这些文件并打开每个文件进行读取。利用IOUtils.copyBytes方法将结果文件的内容复制到控制台输出,展示词频统计的结果。

  • 总之,WordCountDriver类负责整个词频统计任务的初始化、配置、执行以及结果展示工作,它将Hadoop MapReduce的各个组件如Mapper、Reducer与实际的输入输出路径关联起来,形成了一个完整的词频统计应用。

7、启动应用,查看结果

  • 运行WordCountDriver类,查看结果
    在这里插入图片描述

四、实战总结

  • 本实战通过Hadoop MapReduce框架,在虚拟环境中对words.txt文件进行了词频统计。首先,将数据上传至HDFS,并在IntelliJ IDEA中创建Maven项目配置相关依赖。实现的WordCountMapper负责按空格拆分单词并初始化词频为1,WordCountReducer则对相同单词的计数进行合并。最后,WordCountDriver类配置作业参数、指定输入输出路径并在集群上执行任务,完成后从HDFS读取并展示统计结果。整个过程演示了MapReduce模式处理文本数据进行词频统计的完整流程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/599169.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NLP电影情绪分析项目

https://machinelearningmastery.com/develop-word-embedding-model-predicting-movie-review-sentiment/ https://machinelearningmastery.com/prepare-movie-review-data-sentiment-analysis/ 本教程分为 5 个部分;他们是&#xff1a; 电影评论数据集数据准备训练嵌入层训练…

恭喜 Databend 上榜 2023 开源创新榜「优秀开源项目 」

近日&#xff0c;国家科技传播中心见证了一场开源界的重要事件&#xff1a;由中国科协科学技术传播中心、中国计算机学会、中国通信学会和中国科学院软件研究所联合主办&#xff0c;CSDN 承办的 2023 年开源创新榜专家评审会圆满落幕。由王怀民院士担任评委会主任&#xff0c;评…

stable diffusion 人物高级提示词(四)朝向、画面范围、远近、焦距、机位、拍摄角度

一、朝向 英文中文front view正面Profile view / from side侧面half-front view半正面Back view背面(quarter front view:1.5)四分之一正面 prompt/英文中文翻译looking at the camera看向镜头facing the camera面对镜头turned towards the camera转向镜头looking away from …

uniapp中组件库的Checkbox 复选框 的丰富使用方法

目录 #平台差异说明 #基本使用 #自定义形状 #禁用checkbox #自定义形状 #自定义颜色 #横向排列形式 #横向两端排列形式 API #Checkbox Props #CheckboxGroup Props #CheckboxGroup Event 复选框组件一般用于需要多个选择的场景&#xff0c;该组件功能完整&#xff…

[Vulnhub靶机] DriftingBlues: 3

[Vulnhub靶机] DriftingBlues: 3靶机渗透思路及方法&#xff08;个人分享&#xff09; 靶机下载地址&#xff1a; https://download.vulnhub.com/driftingblues/driftingblues3.ova 靶机地址&#xff1a;192.168.67.19 攻击机地址&#xff1a;192.168.67.3 一、信息收集 1.…

simulink的模型搭建,使用状态机-最简单的教程二,状态机不显示它的logo,而显示的是模型缩略图

1&#xff0c;选择chart和graph fuction&#xff0c;然后选择子图化所选内容&#xff0c;就可以实现点击进去&#xff0c;再进行逻辑编写 2&#xff0c;选择外围的chart&#xff0c;然后选择并行&#xff0c;则里面包含的chart就变为虚线了 3&#xff0c;注意这里有一个内容预…

人生重开模拟器

前言&#xff1a; 人生重开模拟器是前段时间非常火的一个小游戏&#xff0c;接下来我们将一起学习使用c语言写一个简易版的人生重开模拟器。 网页版游戏&#xff1a; 人生重开模拟器 (ytecn.com) 1.实现一个简化版的人生重开模拟器 &#xff08;1&#xff09; 游戏开始的时…

Python基础篇: 环境安装

Python基础环境使用 一&#xff1a;运行环境Anaconda介绍1、Anaconda搭建1.1、下载方式1.2、安装1.3、验证是否安装成功 2、管理python环境2.1、列出所有环境2.2、创建环境2.3、进入指定虚拟环境2.4、离开虚拟环境2.5、删除虚拟环境 3、依赖管理3.1、安装依赖3.2、卸载依赖3.3、…

只有jar包如何调试修改JDK底层源码

背景 有时候在阅读JDK源码的时候&#xff0c;需要调试修改源码&#xff0c;但又只有jar包。这个时候我们可以借助JAVA的endorsed技术。在官方文档如下描述。 Specifying the -Djava.endorsed.dirslib/endorsed system property on the Java command line will force the JVM…

Python (十七) __name__ == ‘__main__‘ 作用

程序员的公众号&#xff1a;源1024&#xff0c;获取更多资料&#xff0c;无加密无套路&#xff01; 最近整理了一波电子书籍资料&#xff0c;包含《Effective Java中文版 第2版》《深入JAVA虚拟机》&#xff0c;《重构改善既有代码设计》&#xff0c;《MySQL高性能-第3版》&…

如何访问GitHub快的飞起?两步解决访问超时GitHub,无法访问GitHub的问题

1.查找国内访问比较快的IP 站长工具网址&#xff1a; https://tool.chinaz.com 测速链接: https://tool.chinaz.com/speedtest/github.com 输入 github.com 点击查看分析 往下滑动&#xff0c;找一个比较快的IP&#xff0c;然后去修改hosts配置文件 &#xff08;例如&#xff…

DZ-200系列中间继电器 板后不带底座 DZY-212X DC220V JOSEF约瑟

DZY-200系列中间继电器 系列型号&#xff1a; DZY-201中间继电器 DZY-222中间继电器 DZY-202中间继电器 DZY-203中间继电器 DZY-204中间继电器 DZY-205中间继电器 DZY-206中间继电器 DZY-207中间继电器 DZY-208中间继电器 DZY-209中间继电器 DZY-210中间继电器 DZY-211中间继电…

查看进程对应的路径查看端口号对应的进程ubuntu 安装ssh共享WiFi设置MyBatis 使用map类型作为参数,复杂查询(导出数据)

Linux 查询当前进程所在的路径 top 命令查询相应的进程号pid ps -ef |grep 进程名 lsof -I:端口号 netstat -anp|grep 端口号 cd /proc/进程id cwd 进程运行目录 exe 执行程序的绝对路径 cmdline 程序运行时输入的命令行命令 environ 记录了进程运行时的环境变量 fd 目录下是进…

物联网与低代码: 连接人与数字世界的无限可能

物联网(Internet of Things, IoT)和低代码开发平台的结合&#xff0c;为我们开启了连接物理和数字世界的新时代。通过低代码的简洁、高效的开发方式&#xff0c;我们能够更快速地构建智能化的物联网应用&#xff0c;实现智慧城市、智能家居、工业自动化等多个领域的创新和发展。…

vue无法获取dom

处理过程 watch监听值变化 index.js:33 [Vue warn]: Error in callback for watcher "$store.state.modelsStorageUrl": "TypeError: Cannot set properties of undefined (setting modelScene)"watch: {"$store.state.modelsStorageUrl":{ha…

法线贴图可以实现什么样的3D效果

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 在 3D 建模中&#xff0c;曲面由多边形表示。照明计算是基于这些多边…

4《数据结构》

文章目录 绪论逻辑结构存储结构【物理结构】顺序和链式存储区别顺序表和数组区别数组和链表的区别链表结点概念链表为空条件链表文章http://t.csdnimg.cn/dssVK二叉树B树B树【MYSQL索引默认数据结构】B树和B树区别冒泡排序插排选排快排 绪论 数据结构&#xff1a;研究非数值计…

【计算机算法设计与分析】n皇后问题(C++_回溯法)

文章目录 题目描述测试样例算法原理算法实现参考资料 题目描述 在nxn格的棋盘上放置彼此不受攻击的n格皇后。按照国际象棋的规则&#xff0c;皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n后问题等价于在nxn格的棋盘上放置n个皇后&#xff0c;任何2个皇后不放在同…

《掌握需求优先级排序,成功项目从此起步》

需求优先级排序是软件开发过程中至关重要的一环。通过合理的需求优先级排序&#xff0c;可以更好地把握项目进度&#xff0c;避免在后期因为需求的变更而造成项目延期或成本超支等问题。下面&#xff0c;本文将从需求的角度出发&#xff0c;探讨如何进行需求优先级排序。 一、…

国产服务器操作系统PXE安装脚本 可重复执行(rc08版本)

执行效果如下&#xff1a; #!/bin/bash #Date:2023/12/25 #Func:一键部署pxe服务器 #Author:Zhanghaodong #Version:2023.12.25.05 #Note:仅适用x86架构uefi安装 # 1.此脚本可多次重复执行。 # 2.如遇到某个服务异常退出&#xff0c;检查响应状态码排错后&#xff0c…