大创项目推荐 深度学习卷积神经网络的花卉识别

文章目录

  • 0 前言
  • 1 项目背景
  • 2 花卉识别的基本原理
  • 3 算法实现
    • 3.1 预处理
    • 3.2 特征提取和选择
    • 3.3 分类器设计和决策
    • 3.4 卷积神经网络基本原理
  • 4 算法实现
    • 4.1 花卉图像数据
    • 4.2 模块组成
  • 5 项目执行结果
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习卷积神经网络的花卉识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 项目背景

在我国有着成千上万种花卉, 但如何能方便快捷的识别辨识出这些花卉的种类成为了植物学领域的重要研究课题。 我国的花卉研究历史悠久,
是世界上研究较早的国家之一。 花卉是我国重要的物产资源, 除美化了环境, 调养身心外, 它还具有药用价值, 并且在医学领域为保障人们的健康起着重要作用。

花卉识别是植物学领域的一个重要课题, 多年来已经形成一定体系化分类系统,但需要植物学家耗费大量的精力人工分析。 这种方法要求我们首先去了解花卉的生长环境,
近而去研究花卉的整体形态特征。 在观察植株形态特征时尤其是重点观察花卉的花蕊特征、 花卉的纹理颜色和形状及其相关信息等。 然后在和现有的样本进行比对,
最终确定花卉的所属类别。

2 花卉识别的基本原理

花卉种类识别功能实现的主要途径是利用计算机对样本进行分类。 通过对样本的精准分类达到得出图像识别结果的目的。 经典的花卉识别设计如下图 所示,
这几个过程相互关联而又有明显区别。

在这里插入图片描述

3 算法实现

3.1 预处理

预处理是对处于最低抽象级别的图像进行操作的通用名称, 输入和输出均为强度图像。 为了使实验结果更精准, 需要对图像数据进行预处理, 比如,
根据需要增强图像质量、 将图像裁剪成大小一致的形状、 避免不必要的失真等等。

3.2 特征提取和选择

要想获取花卉图像中的最具代表性的隐含信息, 就必须对花卉图像数据集进行相应的变换。

特征提取旨在通过从现有特征中创建新特征(然后丢弃原始特征) 来减少数据集中的特征数量。 然后, 这些新的简化功能集应该能够汇总原始功能集中包含的大多数信息。
这样, 可以从原始集合的组合中创建原始特征的摘要版本。 对所获取的信息实现从测量空间到特征空间的转换。

3.3 分类器设计和决策

构建完整系统的适当分类器组件的任务是使用特征提取器提供的特征向量将对象分配给类别。 由于完美的分类性能通常是不可能实现的,
因此一般的任务是确定每种可能类别的概率。 输入数据的特征向量表示所提供的抽象使得能够开发出在尽可能大程度上与领域无关的分类理论。

在这里插入图片描述
在这里插入图片描述

在设计阶段, 决策功能必须重复多次, 直到错误达到特定条件为止。 分类决策是在分类器设计阶段基于预处理、 特征提取与选择及判决函数建立的模型,
对接收到的样本数据进行归类, 然后输出分类结果。

3.4 卷积神经网络基本原理

卷积神经网络是受到生物学启发的深度学习经典的多层前馈神经网络结构。 是一种在图像分类中广泛使用的机器学习算法。

CNN 的灵感来自我们人类实际看到并识别物体的方式。 这是基于一种方法,即我们眼睛中的神经元细胞只接收到整个对象的一小部分,而这些小块(称为接受场)
被组合在一起以形成整个对象。与其他的人工视觉算法不一样的是 CNN 可以处理特定任务的多个阶段的不变特征。
卷积神经网络使用的并不像经典的人工神经网络那样的全连接层, 而是通过采取局部连接和权值共享的方法, 来使训练的参数量减少, 降低模型的训练复杂度。

CNN 在图像分类和其他识别任务方面已经使传统技术的识别效果得到显著的改善。 由于在过去的几年中卷积网络的快速发展, 对象分类和目标检测能力取得喜人的成绩。

典型的 CNN 含有多个卷积层和池化层, 并具有全连接层以产生任务的最终结果。 在图像分类中, 最后一层的每个单元表示分类概率。

在这里插入图片描述

4 算法实现

4.1 花卉图像数据

花卉图像的获取除了通过用拍摄设备手工收集或是通过网络下载已经整理好的现有数据集, 还可以通过网络爬虫技术收集整理自己的数据集。

在这里插入图片描述

以roses种类的训练数据为例,文件夹内部均为该种类花的图像文件

在这里插入图片描述

4.2 模块组成

示例代码主要由四个模块组成:

  • input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List
  • model.py——模型模块,构建完整的CNN模型
  • train.py——训练模块,训练模型,并保存训练模型结果
  • test.py——测试模块,测试模型对图片识别的准确度

项目模块执行顺序

运行train.py开始训练。
训练完成后- 运行test.py,查看实际测试结果
input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List

import os
import math
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt# -----------------生成图片路径和标签的List------------------------------------
train_dir = 'D:/ML/flower/input_data'roses = []
label_roses = []
tulips = []
label_tulips = []
dandelion = []
label_dandelion = []
sunflowers = []
label_sunflowers = []

定义函数get_files,获取图片列表及标签列表

# step1:获取所有的图片路径名,存放到# 对应的列表中,同时贴上标签,存放到label列表中。def get_files(file_dir, ratio):for file in os.listdir(file_dir + '/roses'):roses.append(file_dir + '/roses' + '/' + file)label_roses.append(0)for file in os.listdir(file_dir + '/tulips'):tulips.append(file_dir + '/tulips' + '/' + file)label_tulips.append(1)for file in os.listdir(file_dir + '/dandelion'):dandelion.append(file_dir + '/dandelion' + '/' + file)label_dandelion.append(2)for file in os.listdir(file_dir + '/sunflowers'):sunflowers.append(file_dir + '/sunflowers' + '/' + file)label_sunflowers.append(3)# step2:对生成的图片路径和标签List做打乱处理image_list = np.hstack((roses, tulips, dandelion, sunflowers))label_list = np.hstack((label_roses, label_tulips, label_dandelion, label_sunflowers))# 利用shuffle打乱顺序temp = np.array([image_list, label_list])temp = temp.transpose()np.random.shuffle(temp)# 将所有的img和lab转换成listall_image_list = list(temp[:, 0])all_label_list = list(temp[:, 1])# 将所得List分为两部分,一部分用来训练tra,一部分用来测试val# ratio是测试集的比例n_sample = len(all_label_list)n_val = int(math.ceil(n_sample * ratio))  # 测试样本数n_train = n_sample - n_val  # 训练样本数tra_images = all_image_list[0:n_train]tra_labels = all_label_list[0:n_train]tra_labels = [int(float(i)) for i in tra_labels]val_images = all_image_list[n_train:-1]val_labels = all_label_list[n_train:-1]val_labels = [int(float(i)) for i in val_labels]return tra_images, tra_labels, val_images, val_labels

定义函数get_batch,生成训练批次数据

# --------------------生成Batch----------------------------------------------# step1:将上面生成的List传入get_batch() ,转换类型,产生一个输入队列queue,因为img和lab
# 是分开的,所以使用tf.train.slice_input_producer(),然后用tf.read_file()从队列中读取图像
#   image_W, image_H, :设置好固定的图像高度和宽度
#   设置batch_size:每个batch要放多少张图片
#   capacity:一个队列最大多少
定义函数get_batch,生成训练批次数据
def get_batch(image, label, image_W, image_H, batch_size, capacity):# 转换类型image = tf.cast(image, tf.string)label = tf.cast(label, tf.int32)# make an input queueinput_queue = tf.train.slice_input_producer([image, label])label = input_queue[1]image_contents = tf.read_file(input_queue[0])  # read img from a queue# step2:将图像解码,不同类型的图像不能混在一起,要么只用jpeg,要么只用png等。image = tf.image.decode_jpeg(image_contents, channels=3)# step3:数据预处理,对图像进行旋转、缩放、裁剪、归一化等操作,让计算出的模型更健壮。image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)image = tf.image.per_image_standardization(image)# step4:生成batch# image_batch: 4D tensor [batch_size, width, height, 3],dtype=tf.float32# label_batch: 1D tensor [batch_size], dtype=tf.int32image_batch, label_batch = tf.train.batch([image, label],batch_size=batch_size,num_threads=32,capacity=capacity)# 重新排列label,行数为[batch_size]label_batch = tf.reshape(label_batch, [batch_size])image_batch = tf.cast(image_batch, tf.float32)return image_batch, label_batch

model.py——CN模型构建

import tensorflow as tf#定义函数infence,定义CNN网络结构#卷积神经网络,卷积加池化*2,全连接*2,softmax分类#卷积层1def inference(images, batch_size, n_classes):with tf.variable_scope('conv1') as scope:weights = tf.Variable(tf.truncated_normal(shape=[3,3,3,64],stddev=1.0,dtype=tf.float32),name = 'weights',dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[64]),name='biases', dtype=tf.float32)conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')pre_activation = tf.nn.bias_add(conv, biases)conv1 = tf.nn.relu(pre_activation, name=scope.name)# 池化层1# 3x3最大池化,步长strides为2,池化后执行lrn()操作,局部响应归一化,对训练有利。with tf.variable_scope('pooling1_lrn') as scope:pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')# 卷积层2# 16个3x3的卷积核(16通道),padding=’SAME’,表示padding后卷积的图与原图尺寸一致,激活函数relu()with tf.variable_scope('conv2') as scope:weights = tf.Variable(tf.truncated_normal(shape=[3, 3, 64, 16], stddev=0.1, dtype=tf.float32),name='weights', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[16]),name='biases', dtype=tf.float32)conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')pre_activation = tf.nn.bias_add(conv, biases)conv2 = tf.nn.relu(pre_activation, name='conv2')# 池化层2# 3x3最大池化,步长strides为2,池化后执行lrn()操作,# pool2 and norm2with tf.variable_scope('pooling2_lrn') as scope:norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')# 全连接层3# 128个神经元,将之前pool层的输出reshape成一行,激活函数relu()with tf.variable_scope('local3') as scope:reshape = tf.reshape(pool2, shape=[batch_size, -1])dim = reshape.get_shape()[1].valueweights = tf.Variable(tf.truncated_normal(shape=[dim, 128], stddev=0.005, dtype=tf.float32),name='weights', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),name='biases', dtype=tf.float32)local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)# 全连接层4# 128个神经元,激活函数relu()with tf.variable_scope('local4') as scope:weights = tf.Variable(tf.truncated_normal(shape=[128, 128], stddev=0.005, dtype=tf.float32),name='weights', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),name='biases', dtype=tf.float32)local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')# dropout层#    with tf.variable_scope('dropout') as scope:#        drop_out = tf.nn.dropout(local4, 0.8)# Softmax回归层# 将前面的FC层输出,做一个线性回归,计算出每一类的得分with tf.variable_scope('softmax_linear') as scope:weights = tf.Variable(tf.truncated_normal(shape=[128, n_classes], stddev=0.005, dtype=tf.float32),name='softmax_linear', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[n_classes]),name='biases', dtype=tf.float32)softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')return softmax_linear# -----------------------------------------------------------------------------# loss计算# 传入参数:logits,网络计算输出值。labels,真实值,在这里是0或者1# 返回参数:loss,损失值def losses(logits, labels):with tf.variable_scope('loss') as scope:cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels,name='xentropy_per_example')loss = tf.reduce_mean(cross_entropy, name='loss')tf.summary.scalar(scope.name + '/loss', loss)return loss# --------------------------------------------------------------------------# loss损失值优化# 输入参数:loss。learning_rate,学习速率。# 返回参数:train_op,训练op,这个参数要输入sess.run中让模型去训练。def trainning(loss, learning_rate):with tf.name_scope('optimizer'):optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)global_step = tf.Variable(0, name='global_step', trainable=False)train_op = optimizer.minimize(loss, global_step=global_step)return train_op# -----------------------------------------------------------------------# 评价/准确率计算# 输入参数:logits,网络计算值。labels,标签,也就是真实值,在这里是0或者1。# 返回参数:accuracy,当前step的平均准确率,也就是在这些batch中多少张图片被正确分类了。def evaluation(logits, labels):with tf.variable_scope('accuracy') as scope:correct = tf.nn.in_top_k(logits, labels, 1)correct = tf.cast(correct, tf.float16)accuracy = tf.reduce_mean(correct)tf.summary.scalar(scope.name + '/accuracy', accuracy)return accuracy

train.py——利用D:/ML/flower/input_data/路径下的训练数据,对CNN模型进行训练

import input_data
import model# 变量声明
N_CLASSES = 4  # 四种花类型
IMG_W = 64  # resize图像,太大的话训练时间久
IMG_H = 64
BATCH_SIZE = 20
CAPACITY = 200
MAX_STEP = 2000  # 一般大于10K
learning_rate = 0.0001  # 一般小于0.0001# 获取批次batch
train_dir = 'F:/input_data'  # 训练样本的读入路径
logs_train_dir = 'F:/save'  # logs存储路径# train, train_label = input_data.get_files(train_dir)
train, train_label, val, val_label = input_data.get_files(train_dir, 0.3)
# 训练数据及标签
train_batch, train_label_batch = input_data.get_batch(train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
# 测试数据及标签
val_batch, val_label_batch = input_data.get_batch(val, val_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)# 训练操作定义
train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
train_loss = model.losses(train_logits, train_label_batch)
train_op = model.trainning(train_loss, learning_rate)
train_acc = model.evaluation(train_logits, train_label_batch)# 测试操作定义
test_logits = model.inference(val_batch, BATCH_SIZE, N_CLASSES)
test_loss = model.losses(test_logits, val_label_batch)
test_acc = model.evaluation(test_logits, val_label_batch)# 这个是log汇总记录
summary_op = tf.summary.merge_all()# 产生一个会话
sess = tf.Session()
# 产生一个writer来写log文件
train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
# val_writer = tf.summary.FileWriter(logs_test_dir, sess.graph)
# 产生一个saver来存储训练好的模型
saver = tf.train.Saver()
# 所有节点初始化
sess.run(tf.global_variables_initializer())
# 队列监控
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)# 进行batch的训练
try:# 执行MAX_STEP步的训练,一步一个batchfor step in np.arange(MAX_STEP):if coord.should_stop():break_, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])# 每隔50步打印一次当前的loss以及acc,同时记录log,写入writerif step % 10 == 0:print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0))summary_str = sess.run(summary_op)train_writer.add_summary(summary_str, step)# 每隔100步,保存一次训练好的模型if (step + 1) == MAX_STEP:checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')saver.save(sess, checkpoint_path, global_step=step)except tf.errors.OutOfRangeError:print('Done training -- epoch limit reached')finally:coord.request_stop()

test.py——利用D:/ML/flower/flower_photos/roses路径下的测试数据,查看识别效果

import matplotlib.pyplot as pltimport modelfrom input_data import get_files# 获取一张图片def get_one_image(train):# 输入参数:train,训练图片的路径# 返回参数:image,从训练图片中随机抽取一张图片n = len(train)ind = np.random.randint(0, n)img_dir = train[ind]  # 随机选择测试的图片img = Image.open(img_dir)plt.imshow(img)plt.show()image = np.array(img)return image# 测试图片def evaluate_one_image(image_array):with tf.Graph().as_default():BATCH_SIZE = 1N_CLASSES = 4image = tf.cast(image_array, tf.float32)image = tf.image.per_image_standardization(image)image = tf.reshape(image, [1, 64, 64, 3])logit = model.inference(image, BATCH_SIZE, N_CLASSES)logit = tf.nn.softmax(logit)x = tf.placeholder(tf.float32, shape=[64, 64, 3])# you need to change the directories to yours.logs_train_dir = 'F:/save/'saver = tf.train.Saver()with tf.Session() as sess:print("Reading checkpoints...")ckpt = tf.train.get_checkpoint_state(logs_train_dir)if ckpt and ckpt.model_checkpoint_path:global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]saver.restore(sess, ckpt.model_checkpoint_path)print('Loading success, global_step is %s' % global_step)else:print('No checkpoint file found')prediction = sess.run(logit, feed_dict={x: image_array})max_index = np.argmax(prediction)if max_index == 0:result = ('这是玫瑰花的可能性为: %.6f' % prediction[:, 0])elif max_index == 1:result = ('这是郁金香的可能性为: %.6f' % prediction[:, 1])elif max_index == 2:result = ('这是蒲公英的可能性为: %.6f' % prediction[:, 2])else:result = ('这是这是向日葵的可能性为: %.6f' % prediction[:, 3])return result# ------------------------------------------------------------------------if __name__ == '__main__':img = Image.open('F:/input_data/dandelion/1451samples2.jpg')plt.imshow(img)plt.show()imag = img.resize([64, 64])image = np.array(imag)print(evaluate_one_image(image))

5 项目执行结果

执行train模块,结果如下:
在这里插入图片描述
同时,训练结束后,在电脑指定的训练模型存储路径可看到保存的训练好的模型数据。
在这里插入图片描述

执行test模块,结果如下:

在这里插入图片描述
关闭显示的测试图片后,console查看测试结果如下:
在这里插入图片描述

做一个GUI交互界面

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/598749.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

开启物联网的魔法之门 - 深入探索发布/订阅模式

文章目录 MQTT 发布/订阅模式MQTT 发布/订阅中的消息路由MQTT 与 HTTP 请求响应MQTT 与消息队列Paho Java 使用示例结语 MQTT 发布/订阅模式 发布订阅模式(Publish-Subscribe Pattern)是一种消息传递模式,它将发送消息的客户端(发…

如何使用可视化管理工具DockerUI远程管理docker容器

文章目录 前言1. 安装部署DockerUI2. 安装cpolar内网穿透3. 配置DockerUI公网访问地址4. 公网远程访问DockerUI5. 固定DockerUI公网地址 前言 DockerUI是一个docker容器镜像的可视化图形化管理工具。DockerUI可以用来轻松构建、管理和维护docker环境。它是完全开源且免费的。基…

地址变量与函数进阶

指针与函数的高级用法 1.数组2.函数的重载3.函数的指针类型参数4.可变参数函数链表5.函数指针6.指针函数7.内联函数8.总结 在上节中我们简单谈论了指针变量,这节我们就来讨论指针变量的实际应用。 1.数组 相信有一定C语言基础的小伙伴一定很熟悉这个类型。数组可以…

【C++期末编程题题库】代码+详解18道

适合期末复习c看,或者刚入门c的小白看,有的题会补充知识点,期末复习题的代码一般比较简单,所以语法上没那么严谨。本文所有题目要求全在代码块的最上面。 目录 1、设计复数类 2、设计Computer类 3、实现相加的函数模板 4、圆类…

wait 和 notify 这个为什么要在synchronized 代码块中?

一个工作七年的小伙伴,竟然不知道” wait”和“notify”为什么要在 Synchronized 代码块中 。 好吧,如果屏幕前的你也不知道,请在公屏上刷”不知道“。 对于这个问题,我们来看看普通人和高手的回答。 一、问题解析 1. wait 和 n…

线程同步之:QMutex\QMutexLocker

1、基于互斥量的线程同步类QMutex 2、lock() 与 unlock()必须配对使用。 2.1 lock() unlock() 2.2 tryLock() unlock() 3、QMutexLocker()是另一个简化了互斥量处理的类。在QMutexLocker实例变量的“生命周期”内的代码段 得到保护。 QMutexLocker的构造函数接受要给互斥量…

yolov5旋转目标检测-遥感图像检测-无人机旋转目标检测(附代码和原理)

目前,无人机技术的快速发展带来了遥感图像处理领域的革命性改变。然而,由于无人机在飞行时可能会出现旋转的情况,因此对于旋转目标的检测也成为了一个重要的问题。针对这个问题,yolov5可以提供一种高效的解决方案。 以下是介绍的分…

秋招复习之哈希表

目录 前言 1 哈希表 哈希表常用操作 哈希表简单实现 哈希冲突与扩容 2 哈希冲突 链式地址 开放寻址 线性探测 平方探测 多次哈希 编程语言的选择 3 哈希算法 哈希算法的目标 哈希算法的设计 常见哈希算法 数据结构的哈希值 总结 前言 秋招复习之哈希表。 1 哈希表 「哈希表 h…

万界星空科技云MES,助力客户快速构建数字工厂

一、MES发展趋势 1、定制化趋势 工业2.0、3.0的技术已较为成熟,部分制造业水平较为发达的国家已经率先进入以网络化、智能化为代表的工业4.0发展阶段,MES作为制造业规划层随着物联网等持续发展,为适应定制化时代,整体技术模块化、服务化将重…

防蓝光护眼台灯哪个牌子好?2024护眼灯315合格产品

最近身边的宝妈们都来问我这个已有两个娃的老司机,刚上小学就是近视了,买什么台灯给家里孩子能保护视力,经过小学门口时,真的是戴眼镜的小朋友占多数,搜索了我国的近视数据,中国的人口有14亿人左右&#xf…

Chromedriver 下载和安装指南

1. 确定Chrome浏览器版本 首先,在谷歌浏览器中找到当前版本信息。 打开“设置”,点击“关于谷歌”即可看到版本号。确保后续下载的Chromedriver版本与Chrome浏览器版本一致。或者直接跳转网页地址:chrome://settings/help 2. 下载Chromedri…

ShardingSphere-JDBC初探

引言 为什么使用分库分表? 数据量太大单表放不下,并且公司不希望切换产品,可选的方案不多,ShardingSphere就是不错的选择。 切换产品指的是换成es、clickhouse、hbase这种支持大数据,试想一下切换产品对整个项目的改…

Linux第18步_安装“Ubuntu系统下的C语言编译器GCC”

Ubuntu系统没有提供C/C的编译环境,因此还需要手动安装build-essential软件包,它包含了 GNU 编辑器,GNU 调试器,和其他编译软件所必需的开发库和工具。本节用于重点介绍安装“Ubuntu系统下的C语言编译器GC&a…

电子化学品,预计2025年会增长到4302亿美元

电子化学品市场是一个庞大的细分市场,它包括了广泛的化学品种类,如涂料、塑料、精细化学品、农药和医药等。这个市场的发展相当迅速,下面我们将从全球市场和中国市场两个方面对其发展趋势进行分析。全球市场分析: 从全球市场的角度…

Redis命令---List篇

目录 1.Redis Lindex 命令 - 通过索引获取列表中的元素简介语法可用版本: > 1.0.0返回值: 列表中下标为指定索引值的元素。 如果指定索引值不在列表的区间范围内,返回 nil 。 示例 2.Redis Rpush 命令 - 在列表中添加一个或多个值简介语法可用版本: > 1.0.0返…

[C#]利用opencvsharp实现深度学习caffe模型人脸检测

【官方框架地址】 https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt 采用的是官方caffe模型res10_300x300_ssd_iter_140000.caffemodel进行人脸检测 【算法原理】 使用caffe-ssd目标检测框架训练的caffe模型进行深度学习模型检测 …

ubuntu 22.04 快速安装Odoo17.0详记

序言:时间是我们最宝贵的财富,珍惜手上的每个时分 如果为阿里云或者腾讯云,第一步可以忽略 1.更换阿里云源 第一步:先备份下原始源 sudo cp /etc/apt/sources.list /etc/apt/sources.list.backup 第二步:修改文件 sudo cp /etc/apt/sou…

最常用的自动化测试框架汇总

在开始学习python自动化测试之前,先了解目前市场上的自动化测试框架有哪些? 随着技术的不断迭代更新,优胜劣汰也同样发展下来。从一开始工具型自动化,到现在的框架型;从一开始的能用,到现在的不仅能用&…

app广告变现——广告预加载机制,提升用户体验

通过广告预加载,开发者可以避免在向用户显示广告时出现延迟。 应用在程序启动时需要请求网络,加载资源会需要等待时间,如果在等待过程中没有及时给用户展现画面或反馈,用户很可能会因为等待时间过长而推出应用。广告预加载在此时…

「解析」Windows 如何优雅使用 Terminal

所谓工欲善其事必先利其器,对于开发人员 Linux可能是首选,但是在家学习的时候,我还是更喜欢使用 Windows系统,首先是稳定,其次是习惯了。当然了,我还有一台专门安装 Linux系统的小主机用于学习Linux使用&am…