这套题值得写一写,从C题开始就很有技巧
C - Mandarin Orange
给定一个数组 a 1 . . . . . a n a_1.....a_n a1.....an
对于每个 a i a_i ai,找到其左边第一个比他小的位置 l i , a l i < a i l_i,a_{l_i}<a_i li,ali<ai,找到其右边第一个比他小的位置 r i r_i ri,计算 m a x ( ( r i − l i − 1 ) ∗ a i ) max((r_i-l_i -1)*a_i) max((ri−li−1)∗ai)
找左边第一个比他小的位置可以用单调栈,手推一下就可以看出来
栈顶维护当前的数,把前面比它大的数都出栈,因为后面的数再去扫描时已经没有必要维护前面大的数了
# -*- coding: utf-8 -*-
# @time : 2023/6/2 13:30
# @file : atcoder.py
# @software : PyCharmimport bisect
import copy
import sys
from itertools import permutations
from sortedcontainers import SortedList
from collections import defaultdict, Counter, deque
from functools import lru_cache, cmp_to_key
import heapq
import math
sys.setrecursionlimit(100010)def main():items = sys.version.split()fp = open("in.txt") if items[0] == "3.10.6" else sys.stdinn = int(fp.readline())a = list(map(int, fp.readline().split()))l = [0] * nr = [0] * nst = [-1]for i in range(n):while st[-1] >= 0 and a[st[-1]] >= a[i]:st.pop()l[i] = st[-1]st.append(i)st = [n]for i in range(n - 1, -1, -1):while st[-1] < n and a[st[-1]] >= a[i]:st.pop()r[i] = st[-1]st.append(i)ans = 0for i in range(n):t = (r[i] - l[i] - 1) * a[i]ans = max(t, ans)print(ans)if __name__ == "__main__":main()
D - Logical Expression
dp,记录当前操作后为0的种类和操作后为1的种类
# -*- coding: utf-8 -*-
# @time : 2023/6/2 13:30
# @file : atcoder.py
# @software : PyCharmimport bisect
import copy
import sys
from itertools import permutations
from sortedcontainers import SortedList
from collections import defaultdict, Counter, deque
from functools import lru_cache, cmp_to_key
import heapq
import math
sys.setrecursionlimit(100010)def main():items = sys.version.split()fp = open("in.txt") if items[0] == "3.10.6" else sys.stdinn = int(fp.readline())dp = [[0] * 2 for _ in range(n + 1)]dp[0][0] = dp[0][1] = 1for i in range(1, n + 1):s = fp.readline().strip()if s == "AND":dp[i][1] = dp[i - 1][1]dp[i][0] = dp[i - 1][1] + dp[i - 1][0] * 2else:dp[i][1] = 2 * dp[i - 1][1] + dp[i - 1][0]dp[i][0] = dp[i - 1][0]ans = dp[n][1]print(ans)if __name__ == "__main__":main()
E - Rotate and Flip
如果对坐标变换熟悉,那么很简单:
操作1: ( x , y ) : ( y , − x ) (x,y):(y,-x) (x,y):(y,−x)
[ 0 − 1 1 0 ] × [ x y ] = [ y − x ] \left[ \begin{array}{ccc} 0 & -1\\ 1 & 0 \end{array} \right ] \times \left[ \begin{array}{ccc} x\\ y \end{array} \right ] = \left[ \begin{array}{ccc} y\\ -x \end{array} \right ] [01−10]×[xy]=[y−x]
操作2:
[ 0 1 − 1 0 ] × [ x y ] = [ − y x ] \left[ \begin{array}{ccc} 0 & 1\\ -1 & 0 \end{array} \right ] \times \left[ \begin{array}{ccc} x\\ y \end{array} \right ] = \left[ \begin{array}{ccc} -y\\ x \end{array} \right ] [0−110]×[xy]=[−yx]
操作3:
[ − 1 0 0 1 ] × [ x y ] + [ 2 p 0 ] = [ 2 p − x y ] \left[ \begin{array}{ccc} -1 & 0\\ 0 & 1 \end{array} \right ] \times \left[ \begin{array}{ccc} x\\ y \end{array} \right ] + \left[ \begin{array}{ccc} 2p\\ 0 \end{array} \right ] = \left[ \begin{array}{ccc} 2p-x\\ y \end{array} \right ] [−1001]×[xy]+[2p0]=[2p−xy]
操作4:
[ 1 0 0 − 1 ] × [ x y ] + [ 0 2 p ] = [ x 2 p − y ] \left[ \begin{array}{ccc} 1 & 0\\ 0 & -1 \end{array} \right ] \times \left[ \begin{array}{ccc} x\\ y \end{array} \right ] + \left[ \begin{array}{ccc} 0\\ 2p \end{array} \right ] = \left[ \begin{array}{ccc} x\\ 2p-y \end{array} \right ] [100−1]×[xy]+[02p]=[x2p−y]
每一步都左乘即可。需要维护的是
A x + d Ax+d Ax+d中两个矩阵 A , d A,d A,d
#define _CRT_SECURE_NO_WARNINGS#include <iostream>
#include <string>
#include <cstring>
#include <climits>
#include <cstdlib>
#include <map>
#include <set>
#include <vector>
#include <queue>
#include <algorithm>
#define LT(x) (x * 2)
#define RT(x) (x * 2 + 1)using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
typedef pair<LL, LL> pll;
typedef vector<int> vi;int n, m, q;
struct Query {int step, x, i;
};struct Mat {LL a[2][2] = {0};int r, c;
};Mat raw[200020];
vector<pii> trans;
Query query[200020];
pll ans[200020];bool cmp(Query& lhs, Query& rhs) {return lhs.step < rhs.step;
}Mat mul(Mat& a, Mat& b) {Mat ret;ret.r = a.r, ret.c = b.c;for (int i = 0; i < a.r; ++i) {for (int j = 0; j < b.c; ++j) {for (int k = 0; k < a.c; ++k) {ret.a[i][j] += a.a[i][k] * b.a[k][j];}}}return ret;
}int main() { //freopen("in.txt", "r", stdin);scanf("%d", &n);for (int i = 0; i < n; ++i) {LL x, y;scanf("%lld%lld", &x, &y);Mat mat;mat.r = 2, mat.c = 1;mat.a[0][0] = x, mat.a[1][0] = y;raw[i] = mat;}Mat m0;m0.r = m0.c = 2;m0.a[0][0] = 0, m0.a[0][1] = 1, m0.a[1][0] = -1, m0.a[1][1] = 0;Mat m1 = m0;m1.a[0][0] = 0, m1.a[0][1] = -1, m1.a[1][0] = 1, m1.a[1][1] = 0;Mat m2 = m0;m2.a[0][0] = -1, m2.a[0][1] = 0, m2.a[1][0] = 0, m2.a[1][1] = 1;Mat m3 = m0;m3.a[0][0] = 1, m3.a[0][1] = 0, m3.a[1][0] = 0, m3.a[1][1] = -1;scanf("%d", &m);for (int i = 0; i < m; ++i) {int op;scanf("%d", &op);op--;if (op == 0 || op == 1) {trans.push_back({ op, 0 });}else {int p;scanf("%d", &p);trans.push_back({ op, p });}}Mat cur;cur.r = cur.c = 2;cur.a[0][0] = 1, cur.a[1][1] = 1;Mat d0;d0.r = 2, d0.c = 1;scanf("%d", &q);for (int i = 0; i < q; ++i) {int p, x;scanf("%d%d", &p, &x);x--;query[i].step = p, query[i].x = x, query[i].i = i;}sort(query, query + q, cmp);int i = 0, j = 0;while (i <= m && j < q) {int step = query[j].step;int ri = query[j].i;int x = query[j].x;if (i == step) {Mat nm = mul(cur, raw[x]);ans[ri] = { nm.a[0][0] + d0.a[0][0], nm.a[1][0] + d0.a[1][0] };j += 1;}else {if (trans[i].first == 0) {cur = mul(m0, cur);d0 = mul(m0, d0);}else if (trans[i].first == 1) {cur = mul(m1, cur);d0 = mul(m1, d0);}else if (trans[i].first == 2) {LL p = trans[i].second;cur = mul(m2, cur);d0 = mul(m2, d0);d0.a[0][0] += p * 2;}else {LL p = trans[i].second;cur = mul(m3, cur);d0 = mul(m3, d0);d0.a[1][0] += p * 2;}i += 1;}}for (int i = 0; i < q; ++i) {printf("%lld %lld\n", ans[i].first, ans[i].second);}return 0;
}
F - Sugoroku2
本题的思路和强化学习中贝尔曼方程非常类似
当递推式中存在未知数,可以将未知数设为一个需要解的元,最后列方程求解。
具体到此题中,
f ( i ) = 0 , i > = n f ( i ) = f ( 0 ) , i ∈ A f ( i ) = ( f ( i + 1 ) + f ( i + 2 ) . . . f ( i + m ) ) / m + 1 , i ∉ A f(i)=0,i>=n \\ f(i)=f(0), i \in A \\ f(i)=(f(i+1)+f(i+2)...f(i+m))/m +1, i\notin A f(i)=0,i>=nf(i)=f(0),i∈Af(i)=(f(i+1)+f(i+2)...f(i+m))/m+1,i∈/A
由于只存在一个未知数,可以将其单独列出求系数
即
f ( i ) = a i f ( 0 ) + b i f(i)=a_if(0)+b_i f(i)=aif(0)+bi
对两者进行dp递推
最后 f ( 0 ) = a 0 f ( 0 ) + b 0 f(0)=a_0f(0)+b_0 f(0)=a0f(0)+b0
求解 f ( 0 ) f(0) f(0)
#define _CRT_SECURE_NO_WARNINGS#include <iostream>
#include <string>
#include <cstring>
#include <climits>
#include <cstdlib>
#include <map>
#include <set>
#include <vector>
#include <queue>
#include <algorithm>
#define LT(x) (x * 2)
#define RT(x) (x * 2 + 1)using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
typedef pair<LL, LL> pll;
typedef vector<int> vi;int n, m, k;
double a[400040], b[400040], sa[400040], sb[400040];
set<int> ks;int main() { //freopen("in.txt", "r", stdin);scanf("%d%d%d", &n, &m, &k);for (int i = 0; i < k; ++i) {int t;scanf("%d", &t);ks.insert(t);}for (int i = n - 1; i >= 0; --i) {if (ks.count(i)) {a[i] = 1.0;b[i] = 0.0;}else {a[i] = (sa[i + 1] - sa[i + m + 1]) / m;b[i] = (sb[i + 1] - sb[i + m + 1]) / m + 1;}sa[i] = sa[i + 1] + a[i];sb[i] = sb[i + 1] + b[i];}if (1 - a[0] < 1e-7) {printf("-1\n");}else {printf("%.9f\n", b[0] / (1 - a[0]));}return 0;
}