PyTorch数据并行(DP/DDP)浅析

一直以来都是用的单机单卡训练模型,虽然很多情况下已经足够了,但总有一些情况得上分布式训练:

  • 模型大到一张卡放不下;
  • 单张卡batch size不敢设太大,训练速度慢;
  • 当你有好几张卡,不想浪费;
  • 展示一下技术

由于还没遇到过一张显卡放不下整个模型的情况,本文的分布式训练仅限数据并行。主要从数据并行的原理和一些简单的实践例子进行说明。

文章目录

    • 原理介绍
    • DataParallel
      • 小样
    • DistributedDataParallel
      • 小样
      • 一些概念
    • DDP与DP的区别
    • 参考

原理介绍

与每个step一个batch数据相比,数据并行是指每个step用更多的数据(多个batch)进行计算——即多个batch的数据并行进行前向计算。既然是并行,那么就涉及到多张卡一起计算。单卡和多卡训练过程如下图1所示,主要有三个过程:

  • 各卡分别计算损失和梯度,即图中红线部分;
  • 所以梯度整合到主device,即图中蓝线部分;
  • 主device进行参数更新,并将新模型拷贝到其他device上,即图中绿线部分。
../_images/ps.svg
左图是单GPU训练;右图是多GPU训练的一个变体:(1)计算损失和梯度,(2)所有梯度聚合在一个GPU上,(3)发生参数更新,并将参数重新广播给所有GPU

如果不使用数据并行,在显存足够的情况下,我们可以将batch_size设大,这和数据并行的区别在哪呢?如果只将batch_size设大,计算还是在一张卡上完成,速度相对来说是不如将数据均分后放在不同卡上并行计算的。当然,考虑到卡之间的通信问题,要发挥多卡并行的力量需要进行一定权衡。

torch中主要有两种数据并行方式:DP和DDP。

DataParallel

DP是较简单的一种数据并行方式,直接将模型复制到多个GPU上并行计算,每个GPU计算batch中的一部分数据,各自完成前向和反向后,将梯度汇总到主GPU上。其基本流程:

  1. 加载模型、数据至内存;
  2. 创建DP模型;
  3. DP模型的forward过程:
    1. 一个batch的数据均分到不同device上;
    2. 为每个device复制一份模型;
    3. 至此,每个device上有模型和一份数据,并行进行前向传播;
    4. 收集各个device上的输出;
  4. 每个device上的模型反向传播后,收集梯度到主device上,更新主device上的模型,将模型广播到其他device上;
  5. 3-4循环。

在DP中,只有一个主进程,主进程下有多个线程,每个线程管理一个device的训练。因此,DP中内存中只存在一份数据,各个线程间是共享这份数据的。DP和Parameter Server的方式很像。

小样

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset# 假设我们有一个简单的数据集类
class SimpleDataset(Dataset):def __init__(self, data, target):self.data = dataself.target = targetdef __len__(self):return len(self.data)def __getitem__(self, idx):return self.data[idx], self.target[idx]# 假设我们有一个简单的神经网络模型
class SimpleModel(nn.Module):def __init__(self, input_dim):super(SimpleModel, self).__init__()self.fc = nn.Linear(input_dim, 1)def forward(self, x):return torch.sigmoid(self.fc(x))# 假设我们有一些数据
n_sample = 100
n_dim = 10
batch_size = 10
X = torch.randn(n_sample, n_dim)
Y = torch.randint(0, 2, (n_sample, )).float()dataset = SimpleDataset(X, Y)
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)# ===== 注意:刚创建的模型是在 cpu 上的 ===== #
device_ids = [0, 1, 2]
model = SimpleModel(n_dim).to(device_ids[0])
model = nn.DataParallel(model, device_ids=device_ids)optimizer = optim.SGD(model.parameters(), lr=0.01)for epoch in range(10):for batch_idx, (inputs, targets) in enumerate(data_loader):inputs, targets = inputs.to('cuda'), targets.to('cuda')outputs = model(inputs)loss = nn.BCELoss()(outputs, targets.unsqueeze(1))optimizer.zero_grad()loss.backward()optimizer.step()print(f'Epoch {epoch}, Batch {batch_idx}, Loss: {loss.item()}')

其中最重要的一行便是:

model = nn.DataParallel(model, device_ids=device_ids)

注意,模型的参数和缓冲区都要放在device_ids[0]上。在执行forward函数时,模型会被复制到各个GPU上,对模型的属性进行更新并不会产生效果,因为前向完后各个卡上的模型就被销毁了。只有在device_ids[0]上对模型的参数或者buffer进行的更新才会生效!2

DistributedDataParallel

DDP,顾名思义,即分布式的数据并行,每个进程独立进行训练,每个进程会加载完整的数据,但是读取不重叠的数据。DDP执行流程3

  • 准备阶段

    • 环境初始化
      • 在各张卡上初始化进程并建立进程间通信,对应代码:init_process_group
    • 模型广播
      • 将模型parameter、buffer广播到各节点,对应代码:model = DDP(model).to(local_rank)
    • 创建管理器reducer,给每个参数注册梯度平均hook。
  • 准备数据

    • 加载数据集,创建适用于分布式场景的数据采样器,以防不同节点使用的数据不重叠。
  • 训练阶段

    • 前向传播
      • 同步各进程状态(parameter和buffer);
      • 当DDP参数find_unused_parametertrue时,其会在forward结束时,启动一个回溯,标记未用到的参数,提前将这些设置为ready
    • 计算梯度
      • reducer外面:各进程各自开始反向计算梯度;
      • reducer外面:当某个参数的梯度计算好了,其之前注册的grad hook就会触发,在reducer里把这个参数的状态标记为ready
      • reducer里面:当某个bucket的所有参数都是ready时,reducer开始对这个bucket的所有参数开始一个异步的all-reduce梯度平均操作;
      • reducer里面:当所有bucket的梯度平均都结束后,reducer把得到的平均梯度正式写入到parameter.grad里。
    • 优化器应用梯度更新参数。

小样

import argparse
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Datasetimport torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP# 1. 基础模块 ### 
class SimpleModel(nn.Module):def __init__(self, input_dim):super(SimpleModel, self).__init__()self.fc = nn.Linear(input_dim, 1)cnt = torch.tensor(0)self.register_buffer('cnt', cnt)def forward(self, x):self.cnt += 1# print("In forward: ", self.cnt, "Rank: ", self.fc.weight.device)return torch.sigmoid(self.fc(x))class SimpleDataset(Dataset):def __init__(self, data, target):self.data = dataself.target = targetdef __len__(self):return len(self.data)def __getitem__(self, idx):return self.data[idx], self.target[idx]# 2. 初始化我们的模型、数据、各种配置  ####
## DDP:从外部得到local_rank参数。从外面得到local_rank参数,在调用DDP的时候,其会自动给出这个参数
parser = argparse.ArgumentParser()
parser.add_argument("--local_rank", default=-1, type=int)
FLAGS = parser.parse_args()
local_rank = FLAGS.local_rank## DDP:DDP backend初始化
torch.cuda.set_device(local_rank)
dist.init_process_group(backend='nccl')## 假设我们有一些数据
n_sample = 100
n_dim = 10
batch_size = 25
X = torch.randn(n_sample, n_dim)  # 100个样本,每个样本有10个特征
Y = torch.randint(0, 2, (n_sample, )).float()dataset = SimpleDataset(X, Y)
sampler = torch.utils.data.distributed.DistributedSampler(dataset)
data_loader = DataLoader(dataset, batch_size=batch_size, sampler=sampler)## 构造模型
model = SimpleModel(n_dim).to(local_rank)
## DDP: Load模型要在构造DDP模型之前,且只需要在master上加载就行了。
ckpt_path = None
if dist.get_rank() == 0 and ckpt_path is not None:model.load_state_dict(torch.load(ckpt_path))## DDP: 构造DDP model —————— 必须在 init_process_group 之后才可以调用 DDP
model = DDP(model, device_ids=[local_rank], output_device=local_rank)## DDP: 要在构造DDP model之后,才能用model初始化optimizer。
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
loss_func = nn.BCELoss().to(local_rank)# 3. 网络训练  ###
model.train()
num_epoch = 100
iterator = tqdm(range(100))
for epoch in iterator:# DDP:设置sampler的epoch,# DistributedSampler需要这个来指定shuffle方式,# 通过维持各个进程之间的相同随机数种子使不同进程能获得同样的shuffle效果。data_loader.sampler.set_epoch(epoch)# 后面这部分,则与原来完全一致了。for data, label in data_loader:data, label = data.to(local_rank), label.to(local_rank)optimizer.zero_grad()prediction = model(data)loss = loss_func(prediction, label.unsqueeze(1))loss.backward()iterator.desc = "loss = %0.3f" % lossoptimizer.step()# DDP:# 1. save模型的时候,和DP模式一样,有一个需要注意的点:保存的是model.module而不是model。#    因为model其实是DDP model,参数是被`model=DDP(model)`包起来的。# 2. 只需要在进程0上保存一次就行了,避免多次保存重复的东西。if dist.get_rank() == 0 and epoch == num_epoch - 1:torch.save(model.module.state_dict(), "%d.ckpt" % epoch)

结合上面的代码,一个简化版的DDP流程:

  1. 读取DDP相关的配置,其中最关键的就是:local_rank
  2. DDP后端初始化:dist.init_process_group
  3. 创建DDP模型,以及数据加载器。注意要为加载器创建分布式采样器(DistributedSampler);
  4. 训练。

DDP的通常启动方式:

CUDA_VISIBLE_DEVICES="0,1" python -m torch.distributed.launch --nproc_per_node 2 ddp.py

一些概念

以上过程中涉及到一些陌生的概念,其实走一遍DDP的过程就会很好理解:每个进程是一个独立的训练流程,不同进程之间共享同一份数据。为了避免不同进程使用重复的数据训练,以及训练后同步梯度,进程间需要同步。因此,其中一个重点就是每个进程序号,或者说使用的GPU的序号。

  • node:节点,可以是物理主机,也可以是容器;
  • ranklocal_rank:都表示进程在整个分布式任务中的编号。rank是进程在全局的编号,local_rank是进程在所在节点上的编号。显然,如果只有一个节点,那么二者是相等的。在启动脚本中的--nproc_per_node即指定一个节点上有多少进程;
  • world_size:即整个分布式任务中进程的数量。

DDP与DP的区别

  • DP是单进程多线程的,只能在单机上工作;DDP是多进程的,可以在多级多卡上工作。DP通常比DDP慢,主要原因有:1)DP是单进程的,受到GIL的限制;2)DP每个step都需要拷贝模型,以及划分数据和收集输出;
  • DDP可以与模型并行相结合;
  • DP的通信成本随着卡数线性增长,DDP支持Ring-AllReduce,通信成本是固定的。

本文利用pytorch进行数据并行训练进行了一个粗浅的介绍。包括DP和DDP的基本原理,以及简单的例子。实际在分布式过程中涉及到的东西还是挺多的,比如DP/DDP中梯度的回收是如何进行的,DDP中数据采样的细节,DDP中的数据同步操作等。更多的还是要基于真实的需求出发才能真的体会得到。

参考


  1. 参数服务器-动手学深度学习2.0. ↩︎

  2. dataparallel ↩︎

  3. Pytorch Distributed Data Parallal. ↩︎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/598215.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java SSM水质历史数据可视化设计myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM水质历史数据可视化设计是一套完善的web设计系统(系统采用SSM框架进行设计开发,springspringMVCmybatis),对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主…

k_d树, KNN算法学习笔记_1 距离和范数

k_d树, KNN算法学习笔记_1 距离和范数 二维树中最近邻搜索的示例。这里,树已经构建好了,每个节点对应一个矩形,每个矩形被分割成两个相等的子矩形,叶子对应于包含单个点的矩形 From Wikipedia 1. k k k近邻法是基本且简…

Elasticsearch:Serarch tutorial - 使用 Python 进行搜索 (一)

本实践教程将教你如何使用 Elasticsearch 构建完整的搜索解决方案。 在本教程中你将学习: 如何对数据集执行全文关键字搜索(可选使用过滤器)如何使用机器学习模型生成、存储和搜索密集向量嵌入如何使用 ELSER 模型生成和搜索稀疏向量如何使用…

Nginx 简介和入门 - part1

虽然作为1个后端程序员, 终究避不开这东西 安装Nginx 本人的测试服务器是debian , 安装过程跟ubuntu基本一样 sudo apt-get install nginx问题是 nginx 安装后 执行文件在/usr/sbin 而不是/usr/bin 所以正常下普通用户是无法使用的。 必须切换到root…

C练习——定期存取并行

题目:假设银行一年整存零取的月息为1.875%,现在某人手头有一笔钱,他打算在今后5年 中,每年年底取出1000元作为孩子来年的教育金,到第5年孩子毕业时刚好取完这笔钱,请编 程计算第1年年初时他应存入银行多少钱…

深度学习课程实验三训练和测试卷积神经网络

一、 实验目的 1、学会搭建、训练和测试卷积神经网络,并掌握其应用。 2、掌握使用numpy实现卷积(CONV)和池化(POOL)层,包括正向春传播和反向传播。 二、 实验步骤 Convolutional Neural Networks: Step by Step 1、导入所需要的安装包 2、构建卷积神经…

RabbitMQ安装与应用

文章目录 1. RabbitMQ1.1. 同步通讯与异步通讯1.2. 异步通讯的优缺点1.3. 几种MQ的对比1.4. docker安装运行RabbitMQ 流程1.5. RabbitMQ的几个概念1.6. 五种模型1.6.1. 基本消息队列 1.7. 基本使用1.7.1. 1建立连接时会出现以下界面![在这里插入图片描述](https://img-blog.csd…

信息论与编码期末复习——概念论述简答题(一)

个人名片: 🦁作者简介:一名喜欢分享和记录学习的在校大学生 🐯个人主页:妄北y 🐧个人QQ:2061314755 🐻个人邮箱:2061314755qq.com 🦉个人WeChat:V…

箱体透明屏的原理

箱体透明屏的原理主要是通过特殊的结构设计,使得屏幕具有透光性,从而实现在显示内容的同时保持箱体的透明效果。具体来说,箱体透明屏采用镂空结构的设计,将灯条一根根的排列成透明状,使得屏幕整体看起来具有透明感。在…

基于卷积神经网络的回归分析

目录 背影 卷积神经网络CNN的原理 卷积神经网络CNN的定义 卷积神经网络CNN的神经元 卷积神经网络CNN的激活函数 卷积神经网络CNN的传递函数 卷积神经网络的回归分析 完整代码:卷积神经网络的回归分析(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/…

如何设置pygame窗口的标题

通过 pygame.display.set_caption("这是标题") 可以绘制窗口的标题 import pygame #导包 from pygame.locals import* import sysscreen_width600 screen_height600 pygame.init() #初始化 screen pygame.display.set_mode(size(screen_width,screen_height)) py…

postgresql可视化导入文件

不需要在命令行copy了,只需简单点几下 注意:要选清楚各列类型(第6步),不然会出错! 1.在数据库下建一个schema 右击选中数据库-new schema 2.双击你创建的schema,出现tables 3.右击tables&am…

【论文阅读笔记】医学多模态新数据集-Large-scale Long-tailed Disease Diagnosis on Radiology Images

这是复旦大学2023.12.28开放出来的数据集和论文,感觉很宝藏,稍微将阅读过程记录一下。 Zheng Q, Zhao W, Wu C, et al. Large-scale Long-tailed Disease Diagnosis on Radiology Images[J]. arXiv preprint arXiv:2312.16151, 2023. 项目主页&#xf…

DC电源模块的可持续发展与环境保护

BOSHIDA DC电源模块的可持续发展与环境保护 DC电源模块的可持续发展与环境保护是一个重要议题。DC电源模块是一种能够将交流电转换为直流电的设备,广泛应用于各种电子设备和系统中。然而,传统的DC电源模块存在一些环境问题,如能源浪费和电磁…

解决sublime中文符号乱码问题

效果图 原来 后来 问题不是出自encode文件编码,而是win10的字体问题。 解决方法 配置: { "font_face":"Microsoft Yahei", "dpi_scale": 1.0 } 参考自 Sublime 输入中文显示方框问号乱码_sublime中文问号-CSDN博…

redis中bitmap应用

原理介绍 Redis Bitmap 是 Redis 中的一种数据结构,它类似于位图,可以用来表示一组二进制位,每个二进制位只能是 0 或 1。Redis Bitmap 提供了一些操作命令,如 SETBIT、GETBIT、BITCOUNT 等,可以对位图进行设置、…

2023春季李宏毅机器学习笔记 05 :机器如何生成图像

资料 课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub:https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程:https://space.bilibili.com/253734135/channel/collectiondetail?sid2014800 一、图像生成常见模型…

Qt通过pos()获取坐标信息

背景:这是一个QWidget窗体,里面是各种布局的组合,一层套一层。 我希望得到绿色部分的坐标信息(x,y) QPoint get_pos(QWidget* w, QWidget* parent) {if ((QWidget*)w->parent() parent) {return w->pos();}else {QPoint pos(w->po…

Vue-Cli 5.0.0搭建Cesium环境

1、创建vue-cli项目 1、查看vue版本 使用指令:vue -V 2、创建Vue项目 1、在需要创建文件的目录,输入cmd 2、在命令行,输入 vue create <project-name>,并选择最后一项 3、选择插件 4、选择Vue版本3.0 5、根据图示选择

2.HDFS 架构

目录 概述架构HDFS副本HDFS数据写入流程NN 工作原理DN 工作原理 结束 概述 官方文档快递 环境&#xff1a;hadoop 版本 3.3.6 相关文章速递 架构 HDFS HDFS 架构总结如下&#xff1a; a master/slave architecture 一主多从架构a file is split into one or more blocks a…