k_d树, KNN算法学习笔记_1 距离和范数

k_d树, KNN算法学习笔记_1 距离和范数

二维树中最近邻搜索的示例。这里,树已经构建好了,每个节点对应一个矩形,每个矩形被分割成两个相等的子矩形,叶子对应于包含单个点的矩形

From Wikipedia


1. k k k近邻法是基本且简单的分类与回归方法。 k k k近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的 k k k个最近邻训练实例点,然后利用这 k k k个训练实例点的类的多数来预测输入实例点的类。

2. k k k近邻模型对应于基于训练数据集对特征空间的一个划分。 k k k近邻法中,当训练集、距离度量、 k k k值及分类决策规则确定后,其结果唯一确定。

3. k k k近邻法三要素:距离度量、 k k k值的选择和分类决策规则。常用的距离度量是欧氏距离及更一般的pL距离。 k k k值小时, k k k近邻模型更复杂; k k k值大时, k k k近邻模型更简单。 k k k值的选择反映了对近似误差与估计误差之间的权衡,通常由交叉验证选择最优的 k k k

常用的分类决策规则是多数表决,对应于经验风险最小化。

4. k k k近邻法的实现需要考虑如何快速搜索k个最近邻点。kd树是一种便于对k维空间中的数据进行快速检索的数据结构。kd树是二叉树,表示对 k k k维空间的一个划分,其每个结点对应于 k k k维空间划分中的一个超矩形区域。利用kd树可以省去对大部分数据点的搜索, 从而减少搜索的计算量。

1.距离度量

在机器学习算法中,我们经常需要计算样本之间的相似度,通常的做法是计算样本之间的距离。

x x x y y y为两个向量,求它们之间的距离。

这里用Numpy实现,设和为ndarray <numpy.ndarray>,它们的shape都是(N,)

d d d为所求的距离,是个浮点数(float)。

import numpy as np  #注意:运行代码时候需要导入NumPy库。
from numpy import linalg as npl
import matplotlib.pyplot as plt

numpy.linalg.norm 文档 Notes

对于ord < 1的值,结果严格来说不是数学上的“范数”,但它仍然可能对各种数值目的有用。

下面的这些范数可以计算:

ord矩阵范数向量范数说明
‘fro’Frobenius normFrobenius范数定义为矩阵所有元素的平方和的平方根
‘nuc’nuclear norm核范数是奇异值的和
infmax(sum(abs(x), axis=1))max(abs(x))绝对值的最大值
-infmin(sum(abs(x), axis=1))min(abs(x))绝对值的最小值
0sum(x != 0)非零元素的数量
1max(sum(abs(x), axis=0))as below向量的1范数是绝对值的和
-1min(sum(abs(x), axis=0))as below向量的-1范数是绝对值的最小值
22-norm (largest sing. value)as below向量的2范数是奇异值的最大值
-2smallest singular valueas below向量的-2范数是奇异值的最小值
othersum(abs(x)**ord)**(1./ord)其他值的范数, 即: Minkowski范数

The Frobenius norm is given by [1]:

∣ ∣ A ∣ ∣ F = [ ∑ i , j a b s ( a i , j ) 2 ] 1 / 2 ||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2} ∣∣AF=[i,jabs(ai,j)2]1/2

核范数是奇异值的和,即:

∣ ∣ A ∣ ∣ ∗ = ∑ i σ i ( A ) ||A||_* = \sum_i \sigma_i(A) ∣∣A=iσi(A)

Frobenius和核范数都只能定义为矩阵,并在x.ndim != 2时引发ValueError


常见范数[2]

向量范数
范数数学表达式描述“距离”类型
0 范数$ |\mathbf{x}|_{0} = #(i \mid x_i \not = 0)$非零向量元素个数之和x 到零点的汉明距离 Hamming Distance
1 范数 ∣ x ∣ 1 = ∑ i ∣ x i ∣ |\mathbf{x}|_{1} = \sum_i \mid x_i \mid x1=ixi向量元素绝对值之和x 到零点的曼哈顿距离 Manhattan Distance
2 范数 ∣ x ∣ 2 = ∑ i x i 2 |\mathbf{x}|_{2} = \sqrt{\sum_i x_i^{2}} x2=ixi2 向量元素绝对值的平方和再开方x 到零点的欧氏距离 Euclidean Distance
p 范数 ∣ x ∣ p = ∑ i x i p p |\mathbf{x}|_{p} = \sqrt[p]{\sum_i x_i^{p}} xp=pixip 向量元素绝对值的p次方和的1/p次幂x 到零点的p阶闵氏距离 Minkowski Distance
∞ \infty 范数 ∣ x ∣ ∞ = max ⁡ ∣ x i ∣ |\mathbf{x}|_{\infty} = \max{ \mid x_i \mid } x=maxxi所有向量元素绝对值中的最大值x 到零点的切比雪夫距离 Chebyshev Distance
− ∞ -\infty 范数 ∣ x ∣ − ∞ = min ⁡ ∣ x i ∣ |\mathbf{x}|_{-\infty} = \min{ \mid x_i \mid } x=minxi所有向量元素绝对值中的最小值-
矩阵范数
范数数学表达式描述
1 范数 ∣ A ∣ 1 = max ⁡ ∑ i ∣ x i , j ∣ |\mathbf{A}|_{1} = \max{ \sum_i \mid x_{i,j} \mid } A1=maxixi,j列和范数,即所有矩阵列向量绝对值之和的最大值
2 范数 ∣ A ∣ 2 = λ |\mathbf{A}|_{2} = \sqrt{\lambda} A2=λ 谱范数,即 A T A A^TA ATA矩阵的最大特征值的开平方
F 范数 ∣ A ∣ F = ∑ i ∑ j x i , j 2 |\mathbf{A}|_{F} = \sqrt{ \sum_i \sum_j x_{i,j}^{2} } AF=ijxi,j2 Frobenius 范数,即矩阵元素绝对值的平方和再开平方
∞ \infty 范数 ∣ A ∣ ∞ = max ⁡ ∑ j ∣ x i , j ∣ |\mathbf{A}|_{\infty} = \max{ \sum_j \mid x_{i,j} \mid } A=maxjxi,j行和范数,即所有矩阵行向量绝对值之和的最大值
− ∞ -\infty 范数 ∣ A ∣ − ∞ = min ⁡ ∣ x i , j ∣ |\mathbf{A}|_{-\infty} = \min{ \mid x_{i,j} \mid } A=minxi,j所有矩阵元素绝对值中的最小值
核范数 ∣ A ∣ ∗ = ∑ i σ i |\mathbf{A}|_{*} = \sum_i \sigma_i A=iσi矩阵奇异值之和

欧氏距离(Euclidean distance)

欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在 m m m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。

距离公式:

d ( x , y ) = ∑ i ( x i − y i ) 2 d\left( x,y \right) = \sqrt{\sum_{i}^{}(x_{i} - y_{i})^{2}} d(x,y)=i(xiyi)2

在这里插入图片描述

代码实现:

def euclidean(x, y):return np.sqrt(np.sum((x - y)**2))
ndA = np.asanyarray
p1 = ndA((4, 5))
p2 = ndA((12,16))

euDst_ = lambda p1, p2: np.sqrt(np.sum((p1 - p2)**2))
def euDst(p1, p2):return npl.norm(p1 - p2)

曼哈顿距离(Manhattan distance)

想象你在城市道路里,要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源,曼哈顿距离也称为城市街区距离(City Block distance)。

距离公式:

d ( x , y ) = ∑ i ∣ x i − y i ∣ d(x,y) = \sum_{i}^{}|x_{i} - y_{i}| d(x,y)=ixiyi

在这里插入图片描述

代码实现:

def manhattan(x, y):return np.sum(np.abs(x - y))
manDst_ = lambda p1, p2: np.sum(np.abs(p1 - p2))
def manDst(p1, p2):return npl.norm(p1 - p2, ord=1)

切比雪夫距离(Chebyshev distance)

在数学中,切比雪夫距离(Chebyshev distance)或是L∞度量,是向量空间中的一种度量,二个点之间的距离定义是其各坐标数值差绝对值的最大值。以数学的观点来看,切比雪夫距离是由一致范数(uniform norm)(或称为上确界范数)所衍生的度量,也是超凸度量(injective metric space)的一种。

距离公式:

d ( x , y ) = max ⁡ i ∣ x i − y i ∣ d\left( x,y \right) = \max_{i}\left| x_{i} - y_{i} \right| d(x,y)=imaxxiyi

在这里插入图片描述

若将国际象棋棋盘放在二维直角座标系中,格子的边长定义为1,座标的 x x x轴及 y y y轴和棋盘方格平行,原点恰落在某一格的中心点,则王从一个位置走到其他位置需要的步数恰为二个位置的切比雪夫距离,因此切比雪夫距离也称为棋盘距离。例如位置F6和位置E2的切比雪夫距离为4。任何一个不在棋盘边缘的位置,和周围八个位置的切比雪夫距离都是1。

代码实现:

def chebyshev(x, y):return np.max(np.abs(x - y))
cheDst_ = lambda p1, p2: np.max(np.abs(p1 - p2))
def cheDst(p1, p2):# return np.max(np.abs(p1 - p2))return np.linalg.norm(p1 - p2, ord=np.inf)

闵可夫斯基距离(Minkowski distance)

闵氏空间指狭义相对论中由一个时间维和三个空间维组成的时空,为俄裔德国数学家闵可夫斯基(H.Minkowski,1864-1909)最先表述。他的平坦空间(即假设没有重力,曲率为零的空间)的概念以及表示为特殊距离量的几何学是与狭义相对论的要求相一致的。闵可夫斯基空间不同于牛顿力学的平坦空间。 p p p取1或2时的闵氏距离是最为常用的, p = 2 p= 2 p=2即为欧氏距离,而 p = 1 p =1 p=1时则为曼哈顿距离。

p p p取无穷时的极限情况下,可以得到切比雪夫距离。

距离公式:

d ( x , y ) = ( ∑ i ∣ x i − y i ∣ p ) 1 p d\left( x,y \right) = \left( \sum_{i}^{}|x_{i} - y_{i}|^{p} \right)^{\frac{1}{p}} d(x,y)=(ixiyip)p1

代码实现:

def minkowski(x, y, ):return np.sum(np.abs(x - y)**p)**(1 / p)
mkDst_ = lambda p1, p2, p: np.sum(np.abs(p1 - p2)**p)**(1 / p)
def mkDst(p1, p2, p):# if   p == 1: # 曼哈顿距离#   return npl.norm(p1 - p2, ord=1)# elif p == 2: # 欧式距离#   return npl.norm(p1 - p2)# elif p == np.inf: # 切比雪夫距离#   return npl.norm(p1 - p2, ord=np.inf)# else: # 闵可夫斯基距离return npl.norm(p1 - p2, ord = p) # ?# ord : {non-zero int, inf, -inf, 'fro', 'nuc'}, optional

汉明距离(Hamming distance)

汉明距离是使用在数据传输差错控制编码里面的,汉明距离是一个概念,它表示两个(相同长度)字对应位不同的数量,我们以表示两个字,之间的汉明距离。对两个字符串进行异或运算,并统计结果为1的个数,那么这个数就是汉明距离。

距离公式:

d ( x , y ) = 1 N ∑ i 1 x i ≠ y i d\left( x,y \right) = \frac{1}{N}\sum_{i}^{}1_{x_{i} \neq y_{i}} d(x,y)=N1i1xi=yi
在这里插入图片描述

代码实现:

def hamming(x, y):return np.sum(x != y) / len(x)
hmDst_ = lambda p1, p2: np.sum(p1 != p2) / len(p1)
def hmDst(p1, p2):return npl.norm(p1 - p2, ord=0) / len(p1)

余弦相似度(Cosine Similarity)

余弦相似性通过测量两个向量的夹角的余弦值来度量它们之间的相似性。0度角的余弦值是1,而其他任何角度的余弦值都不大于1;并且其最小值是-1。从而两个向量之间的角度的余弦值确定两个向量是否大致指向相同的方向。两个向量有相同的指向时,余弦相似度的值为1;两个向量夹角为90°时,余弦相似度的值为0;两个向量指向完全相反的方向时,余弦相似度的值为-1。这结果是与向量的长度无关的,仅仅与向量的指向方向相关。余弦相似度通常用于正空间,因此给出的值为0到1之间。

在这里插入图片描述

二维空间为例,上图的 a a a b b b是两个向量,我们要计算它们的夹角θ。余弦定理告诉我们,可以用下面的公式求得:

cos ⁡ θ = a 2 + b 2 − c 2 2 a b \cos\theta = \frac{a^{2} + b^{2} - c^{2}}{2ab} cosθ=2aba2+b2c2

假定 a a a向量是 [ x 1 , y 1 ] \left\lbrack x_{1},y_{1} \right\rbrack [x1,y1] b b b向量是 [ x 2 , y 2 ] \left\lbrack x_{2},y_{2} \right\rbrack [x2,y2],两个向量间的余弦值可以通过使用欧几里得点积公式求出:

cos ⁡ ( θ ) = A ⋅ B ∥ A ∥ ∥ B ∥ = ∑ i = 1 n A i × B i ∑ i = 1 n ( A i ) 2 × ∑ i = 1 n ( B i ) 2 \cos\left( \theta \right) = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel} = \frac{\sum_{i = 1}^{n}A_{i} \times B_{i}}{\sqrt{\sum_{i = 1}^{n}(A_{i})^{2} \times \sqrt{\sum_{i = 1}^{n}(B_{i})^{2}}}} cos(θ)=A∥∥BAB=i=1n(Ai)2×i=1n(Bi)2 i=1nAi×Bi

cos ⁡ ( θ ) = A ⋅ B ∥ A ∥ ∥ B ∥ = ( x 1 , y 1 ) ⋅ ( x 2 , y 2 ) x 1 2 + y 1 2 × x 2 2 + y 2 2 = x 1 x 2 + y 1 y 2 x 1 2 + y 1 2 × x 2 2 + y 2 2 \cos\left( \theta \right) = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel} = \frac{\left( x_{1},y_{1} \right) \cdot \left( x_{2},y_{2} \right)}{\sqrt{x_{1}^{2} + y_{1}^{2}} \times \sqrt{x_{2}^{2} + y_{2}^{2}}} = \frac{x_{1}x_{2} + y_{1}y_{2}}{\sqrt{x_{1}^{2} + y_{1}^{2}} \times \sqrt{x_{2}^{2} + y_{2}^{2}}} cos(θ)=A∥∥BAB=x12+y12 ×x22+y22 (x1,y1)(x2,y2)=x12+y12 ×x22+y22 x1x2+y1y2

如果向量 a a a b b b不是二维而是 n n n维,上述余弦的计算法仍然正确。假定 A A A B B B是两个 n n n维向量, A A A [ A 1 , A 2 , … , A n ] \left\lbrack A_{1},A_{2},\ldots,A_{n} \right\rbrack [A1,A2,,An] B B B [ B 1 , B 2 , … , B n ] \left\lbrack B_{1},B_{2},\ldots,B_{n} \right\rbrack [B1,B2,,Bn],则 A A A B B B的夹角余弦等于:

cos ⁡ ( θ ) = A ⋅ B ∥ A ∥ ∥ B ∥ = ∑ i = 1 n A i × B i ∑ i = 1 n ( A i ) 2 × ∑ i = 1 n ( B i ) 2 \cos\left( \theta \right) = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel} = \frac{\sum_{i = 1}^{n}A_{i} \times B_{i}}{\sqrt{\sum_{i = 1}^{n}(A_{i})^{2}} \times \sqrt{\sum_{i = 1}^{n}(B_{i})^{2}}} cos(θ)=A∥∥BAB=i=1n(Ai)2 ×i=1n(Bi)2 i=1nAi×Bi

在这里插入图片描述

代码实现:

from math import *def square_rooted(x):return round(sqrt(sum([a*a for a in x])),3)
def cosine_similarity(x, y):numerator = sum(a * b for a, b in zip(x, y))denominator = square_rooted(x) * square_rooted(y)return round(numerator / float(denominator), 3)
print(cosine_similarity([3, 45, 7, 2], [2, 54, 13, 15]))
cosSm_ = lambda p1, p2:\np.sum(p1 * p2)\/ (np.sqrt(np.sum(p1**2))\* np.sqrt(np.sum(p2**2)))
def cosSm(p1, p2):return  npl.norm(p1 - p2, ord=2)\/ (npl.norm(p1, ord=2) * npl.norm(p2, ord=2))

参考

  1. 黄海广老师的机器学习教程
  2. 【Numpy】常见范数的数学定义与 Numpy 实现
  • 注意⚠️: 本文由vscode的’copilot AI`协助完成, 谨慎使用
    在这里插入图片描述

未完待续…

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/598213.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Elasticsearch:Serarch tutorial - 使用 Python 进行搜索 (一)

本实践教程将教你如何使用 Elasticsearch 构建完整的搜索解决方案。 在本教程中你将学习&#xff1a; 如何对数据集执行全文关键字搜索&#xff08;可选使用过滤器&#xff09;如何使用机器学习模型生成、存储和搜索密集向量嵌入如何使用 ELSER 模型生成和搜索稀疏向量如何使用…

Nginx 简介和入门 - part1

虽然作为1个后端程序员&#xff0c; 终究避不开这东西 安装Nginx 本人的测试服务器是debian &#xff0c; 安装过程跟ubuntu基本一样 sudo apt-get install nginx问题是 nginx 安装后 执行文件在/usr/sbin 而不是/usr/bin 所以正常下普通用户是无法使用的。 必须切换到root…

C练习——定期存取并行

题目&#xff1a;假设银行一年整存零取的月息为1.875%&#xff0c;现在某人手头有一笔钱&#xff0c;他打算在今后5年 中&#xff0c;每年年底取出1000元作为孩子来年的教育金&#xff0c;到第5年孩子毕业时刚好取完这笔钱&#xff0c;请编 程计算第1年年初时他应存入银行多少钱…

深度学习课程实验三训练和测试卷积神经网络

一、 实验目的 1、学会搭建、训练和测试卷积神经网络&#xff0c;并掌握其应用。 2、掌握使用numpy实现卷积(CONV)和池化(POOL)层&#xff0c;包括正向春传播和反向传播。 二、 实验步骤 Convolutional Neural Networks: Step by Step 1、导入所需要的安装包 2、构建卷积神经…

RabbitMQ安装与应用

文章目录 1. RabbitMQ1.1. 同步通讯与异步通讯1.2. 异步通讯的优缺点1.3. 几种MQ的对比1.4. docker安装运行RabbitMQ 流程1.5. RabbitMQ的几个概念1.6. 五种模型1.6.1. 基本消息队列 1.7. 基本使用1.7.1. 1建立连接时会出现以下界面![在这里插入图片描述](https://img-blog.csd…

信息论与编码期末复习——概念论述简答题(一)

个人名片&#xff1a; &#x1f981;作者简介&#xff1a;一名喜欢分享和记录学习的在校大学生 &#x1f42f;个人主页&#xff1a;妄北y &#x1f427;个人QQ&#xff1a;2061314755 &#x1f43b;个人邮箱&#xff1a;2061314755qq.com &#x1f989;个人WeChat&#xff1a;V…

箱体透明屏的原理

箱体透明屏的原理主要是通过特殊的结构设计&#xff0c;使得屏幕具有透光性&#xff0c;从而实现在显示内容的同时保持箱体的透明效果。具体来说&#xff0c;箱体透明屏采用镂空结构的设计&#xff0c;将灯条一根根的排列成透明状&#xff0c;使得屏幕整体看起来具有透明感。在…

基于卷积神经网络的回归分析

目录 背影 卷积神经网络CNN的原理 卷积神经网络CNN的定义 卷积神经网络CNN的神经元 卷积神经网络CNN的激活函数 卷积神经网络CNN的传递函数 卷积神经网络的回归分析 完整代码:卷积神经网络的回归分析(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/…

如何设置pygame窗口的标题

通过 pygame.display.set_caption("这是标题") 可以绘制窗口的标题 import pygame #导包 from pygame.locals import* import sysscreen_width600 screen_height600 pygame.init() #初始化 screen pygame.display.set_mode(size(screen_width,screen_height)) py…

postgresql可视化导入文件

不需要在命令行copy了&#xff0c;只需简单点几下 注意&#xff1a;要选清楚各列类型&#xff08;第6步&#xff09;&#xff0c;不然会出错&#xff01; 1.在数据库下建一个schema 右击选中数据库-new schema 2.双击你创建的schema&#xff0c;出现tables 3.右击tables&am…

【论文阅读笔记】医学多模态新数据集-Large-scale Long-tailed Disease Diagnosis on Radiology Images

这是复旦大学2023.12.28开放出来的数据集和论文&#xff0c;感觉很宝藏&#xff0c;稍微将阅读过程记录一下。 Zheng Q, Zhao W, Wu C, et al. Large-scale Long-tailed Disease Diagnosis on Radiology Images[J]. arXiv preprint arXiv:2312.16151, 2023. 项目主页&#xf…

DC电源模块的可持续发展与环境保护

BOSHIDA DC电源模块的可持续发展与环境保护 DC电源模块的可持续发展与环境保护是一个重要议题。DC电源模块是一种能够将交流电转换为直流电的设备&#xff0c;广泛应用于各种电子设备和系统中。然而&#xff0c;传统的DC电源模块存在一些环境问题&#xff0c;如能源浪费和电磁…

解决sublime中文符号乱码问题

效果图 原来 后来 问题不是出自encode文件编码&#xff0c;而是win10的字体问题。 解决方法 配置&#xff1a; { "font_face":"Microsoft Yahei", "dpi_scale": 1.0 } 参考自 Sublime 输入中文显示方框问号乱码_sublime中文问号-CSDN博…

redis中bitmap应用

原理介绍 Redis Bitmap 是 Redis 中的一种数据结构&#xff0c;它类似于位图&#xff0c;可以用来表示一组二进制位&#xff0c;每个二进制位只能是 0 或 1。Redis Bitmap 提供了一些操作命令&#xff0c;如 SETBIT、GETBIT、BITCOUNT 等&#xff0c;可以对位图进行设置、…

2023春季李宏毅机器学习笔记 05 :机器如何生成图像

资料 课程主页&#xff1a;https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub&#xff1a;https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程&#xff1a;https://space.bilibili.com/253734135/channel/collectiondetail?sid2014800 一、图像生成常见模型…

Qt通过pos()获取坐标信息

背景&#xff1a;这是一个QWidget窗体&#xff0c;里面是各种布局的组合&#xff0c;一层套一层。 我希望得到绿色部分的坐标信息(x,y) QPoint get_pos(QWidget* w, QWidget* parent) {if ((QWidget*)w->parent() parent) {return w->pos();}else {QPoint pos(w->po…

Vue-Cli 5.0.0搭建Cesium环境

1、创建vue-cli项目 1、查看vue版本 使用指令:vue -V 2、创建Vue项目 1、在需要创建文件的目录,输入cmd 2、在命令行,输入 vue create <project-name>,并选择最后一项 3、选择插件 4、选择Vue版本3.0 5、根据图示选择

2.HDFS 架构

目录 概述架构HDFS副本HDFS数据写入流程NN 工作原理DN 工作原理 结束 概述 官方文档快递 环境&#xff1a;hadoop 版本 3.3.6 相关文章速递 架构 HDFS HDFS 架构总结如下&#xff1a; a master/slave architecture 一主多从架构a file is split into one or more blocks a…

激光焊接机:塑料产品制造中的革命性优势

随着科技的飞速发展&#xff0c;激光焊接机在塑料产品制造领域的应用越来越广泛。相较于传统的焊接技术&#xff0c;激光焊接机在塑料产品制造中展现出诸多优势&#xff0c;成为现代工业生产中不可或缺的一部分。 一、精确、高效的焊接性能 激光焊接机采用高能激光束作为焊接热…

华为交换机怎么添加和剥除VLAN标签

知识改变命运&#xff0c;技术就是要分享&#xff0c;有问题随时联系&#xff0c;免费答疑&#xff0c;欢迎联系&#xff01; 华为交换机VLAN标签的添加和剥除处理过程 接口对收发的以太网数据帧添加或剥除VLAN标签的处理依据接口的接口类型和缺省VLAN。 由上面各类接口添加或…