竞赛保研 基于机器视觉的行人口罩佩戴检测

简介

2020新冠爆发以来,疫情牵动着全国人民的心,一线医护工作者在最前线抗击疫情的同时,我们也可以看到很多科技行业和人工智能领域的从业者,也在贡献着他们的力量。近些天来,旷视、商汤、海康、百度都多家科技公司研发出了带有AI人脸检测算法的红外测温、口罩佩戴检测等设备,依图、阿里也研发出了通过深度学习来自动诊断新冠肺炎的医疗算法。

🔥 优质竞赛项目系列,今天要分享的是

图像口罩识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

效果展示

不多说, 先上效果
在这里插入图片描述
在这里插入图片描述

实现方法
模型介绍

在深度学习时代之前,人脸检测一般采用传统的、基于手动设计特征的方法,其中最知名的莫过于Viola-
Jones算法,至今部分手机和数码相机内置的人脸检测算法,仍旧采用Viola-
Jones算法。然而,随着深度学习技术的蓬勃发展,基于深度学习的人脸检测算法逐步取代了传统的计算机视觉算法。

在人脸检测最常用的数据集——WIDER Face数据集的评估结果上来看,使用深度学习的模型在准确率和召回率上极大的超过了传统算法。下图的青线是Viola-
Jones的Precision-Recall图。
在这里插入图片描述

下图是众多基于深度学习的人脸检测算法的性能评估PR曲线。可以看到基于深度学习的人脸检测算法的性能,大幅超过了VJ算法(曲线越靠右越好)。近两年来,人脸检测算法在WIDER
Face的简单测试集(easy 部分)上可以达到95%召回率下,准确率也高达90%,作为对比,VJ算法在40%召回率下,准确率只有75%左右。
在这里插入图片描述

其实,基于深度学习的人脸检测算法,多数都是基于深度学习目标检测算法进行的改进,或者说是把通用的目标检测模型,为适应人脸检测任务而进行的特定配置。而众多的目标检测模型(Faster
RCNN、SSD、YOLO)中,人脸检测算法最常用的是SSD算法,例如知名的SSH模型、S3FD模型、RetinaFace算法,都是受SSD算法的启发,或者基于SSD进行的任务定制化改进,
例如将定位层提到更靠前的位置,Anchor大小调整、Anchor标签分配规则的调整,在SSD基础上加入FPN等。

在我个人看来,SSD是最优雅、简洁的目标检测模型,因此,我们实现的人脸口罩检测模型,也是采用SSD的思想,限于篇幅原因

在本项目中,我们使用的是SSD架构的人脸检测算法,相比于普通的人脸检测模型只有人脸一个类别,而人脸口罩检测,只不过是增加了一个类别,变成戴口罩人脸和不戴口罩的人脸两个类别而已。

我们开源的模型是一个非常小的模型,输入是260x260大小,主干网络只有8层,有五个定位和分类层,一共只有28个卷积层。而每个卷积层的通道数,是32、64、128这三种,所有这个模型总的参数量只有101.5万个参数。下图是网络的结构图。
在这里插入图片描述

其中,上面八个卷积层是主干网络,也就是特征提取层,下面20层是定位和分类层(注意,为了方便显示,我们没有画出BN层)。

训练目标检测模型,最重要的合理的设置anchor的大小和宽高比,笔者个人在做项目时,一般会统计数据集的目标物体的宽高比和大小来设置anchor的大小和宽高比。例如,在我们标注的口罩人脸数据集上,我们读取了所有人脸的标注信息,并计算每个人脸高度与宽度的比值,统计得到高度与宽比的分布直方图,如下:
在这里插入图片描述

因为人脸的一般是长方形的,而很多图片是比较宽的,例如16:9的图片,人脸的宽度和高度归一化后,有很多图片的高度是宽度的2倍甚至更大。从上图也可以看出,归一化后的人脸高宽比集中在1~2.5之间。所以,根据数据的分布,我们将五个定位层的anchor的宽高比统一设置为1,0.62,
0.42。(转换为高宽比,也就是约1,1.6:1,2.4:1)

五个定位层的配置信息如下表所示:

在这里插入图片描述

笔者使用基于Keras实现的目标检测微框架训练的人脸口罩检测模型,为了避免一些网友提到的使用手挡住嘴巴就会欺骗部分口罩检测系统的情况,我们在数据集中加入了部分嘴巴被手捂住的数据,另外,我们还在训练的过程中,随机的往嘴巴部分粘贴一些其他物体的图片,从而避免模型认为只要露出嘴巴的就是没戴口罩,没露出嘴巴的就是带口罩这个问题,通过这两个规避方法,我们很好的解决了这个问题,大家可以在aizoo.com体验我们的模型效果。

后处理部分主要就是非最大抑制(NMS),我们使用了单类的NMS,也就是戴口罩人脸和不戴口罩人脸两个类别一起做NMS,从而提高速度。

获取数据集

人脸口罩数据集下载

下载人脸口罩数据集的目的是利用OpenCV进行模型训练,这里采用口罩数据集的正负比列为1:3,即500张戴口罩的人脸图片和1500张不戴口罩的人脸图片。

数据集获取:联系博主获取

解压之后,将压缩包中的mask文件自行选择文件夹放置,以便之后的操作。

如下:
在这里插入图片描述

上面带口罩的人脸图像我们命名为正样本,相反,没带口罩的数据集合命名为负样本, 如下:

在这里插入图片描述
由于数据集解压后样本图像命名是乱序的,我们要进行重命名,上面两幅图是已经处理好的, 下面给出示例代码

#对数据集重命名#coding:utf-8import ospath = "E:\\facemask\\mask\\have_mask" #人脸口罩数据集正样本的路径filelist = os.listdir(path)count=1000 #开始文件名1000.jpgfor file in filelist:   Olddir=os.path.join(path,file)  if os.path.isdir(Olddir):  continuefilename=os.path.splitext(file)[0]   filetype=os.path.splitext(file)[1]Newdir=os.path.join(path,str(count)+filetype)  os.rename(Olddir,Newdir)count+=1#对数据集重命名#coding:utf-8import ospath = "E:\\facemask\\mask\\no_mask" #人脸口罩数据集的路径filelist = os.listdir(path)count=10000 #开始文件名1000.jpgfor file in filelist:   Olddir=os.path.join(path,file)  if os.path.isdir(Olddir):  continuefilename=os.path.splitext(file)[0]   filetype=os.path.splitext(file)[1]Newdir=os.path.join(path,str(count)+filetype)  os.rename(Olddir,Newdir)count+=1

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/598116.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

思科常用图标大全Cisco产品图标库Icon(附PPT下载)

华为企业网络常用图标大全(附PPT下载)-CSDN博客文章浏览阅读2.8k次。PPT完整版获取交换机&WLAN服务器网络&网管建筑公共终端end_华为企业网络常用图标大全https://blog.csdn.net/XMWS_IT/article/details/120864637?ops_request_misc%257B%2522…

OpenAI ChatGPT-4开发笔记2024-03:Chat之Function Calling/Function/Tool/Tool_Choice

Updates on Function Calling were a major highlight at OpenAI DevDay. In another world,原来的function call都不再正常工作了,必须全部重写。 function和function call全部由tool和tool_choice取代。2023年11月之前关于function call的代码都准备翘翘。 干嘛…

【Java EE初阶八】多线程案例(计时器模型)

1. java标准库的计时器 1.1 关于计时器 计时器类似闹钟,有定时的功能,其主要是到时间就会执行某一操作,即可以指定时间,去执行某一逻辑(某一代码)。 1.2 计时器的简单介绍 在java标准库中,提供…

新手可理解的PyTorch线性层解析:神经网络的构建基石

目录 torch.nn子模块Linear Layers详解 nn.Identity Identity 类描述 Identity 类的功能和作用 Identity 类的参数 形状 示例代码 nn.Linear Linear 类描述 Linear 类的功能和作用 Linear 类的参数 形状 变量 示例代码 nn.Bilinear Bilinear 类的功能和作用 B…

国家信息安全水平等级考试NISP二级题目卷⑥(包含答案)

国家信息安全水平等级考试NISP二级题目卷(六) 国家信息安全水平等级考试NISP二级题目卷(六)需要报考咨询可以私信博主! 前言: 国家信息安全水平考试(NISP)二级,被称为校园版”CISP”,由中国信息…

用友U8 Cloud smartweb2.RPC.d XML外部实体注入漏洞

产品介绍 用友U8cloud是用友推出的新一代云ERP,主要聚焦成长型、创新型、集团型企业,提供企业级云ERP整体解决方案。它包含ERP的各项应用,包括iUAP、财务会计、iUFO cloud、供应链与质量管理、人力资源、生产制造、管理会计、资产管理&#…

基于gamma矫正的照片亮度调整(python和opencv实现)

import cv2 import numpy as npdef adjust_gamma(image, gamma1.0):invGamma 1.0 / gammatable np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype("uint8")return cv2.LUT(image, table)# 读取图像 original cv2.imread("tes…

影视仓最新配置接口2024tvbox源配置地址

影视仓是在TVBox开源代码基础上开发的优质版本,安装后需要配置接口才能正常使用。影视仓"内置版"是开发者做的资源内置化修改版本,不用自行设置接口,安装后即可使用。 影视仓的接口配置方法与TVBOX一样,区别在于影视仓…

Winform工具箱控件MenuStrip

MenuStrip是菜单栏 ComboBox是下拉框 TextBox是文本框 DataGridView是数据表 TextBox是文本框,大小可以调节,可以是单行,也可以是多行,通过右上角的小三角可以修改。 这个文本在编辑的时候可以在属性的Text中点击右边的小三角来换…

卷积神经网络|导入图片

在学习卷积神经网络时,我们通常使用的就是公开的数据集,这里,我们不使用公开数据集,直接导入自己的图片数据,下面,就简单写个程序实现批量图片的导入。 import osfrom PIL import Imageimport numpy as np…

Prometheus实战篇:Prometheus监控redis

准备环境 docker-compose安装redis docker-compose.yaml version: 3 services:redis:image:redis:5container_name: rediscommand: redis-server --requirepass 123456 --maxmemory 512mbrestart: alwaysvolumes:- /data/redis/data: /dataport:- "6379:6379"dock…

JAVA版随机抽人

主函数 public class Main {public static void main(String[] args) {//这里存入数据String[] data {"土一","李二","张三","李四","乔冠宇","王五"};MyJFrame frame new MyJFrame(data);} }界面类 import j…

【React系列】Portals、Fragment

本文来自#React系列教程:https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzg5MDAzNzkwNA&actiongetalbum&album_id1566025152667107329) Portals 某些情况下,我们希望渲染的内容独立于父组件,甚至是独立于当前挂载到的DOM元素中&am…

GPU连通域分析方法

第1章连通域分析方法 连通域分析方法用于提取图像中相似属性的区域,并给出区域的面积,位置等特征信息。分为两种,基于游程(Runlength),和基于标记(Label)。 基于游程的方法,按照行对图像进行游…

3D Gaussian Splatting复现

最近3D Gaussian Splatting很火,网上有很多复现过程,大部分都是在Windows上的。Linux上配置环境会方便简单一点,这里记录一下我在Linux上复现的过程。 Windows下的环境配置和编译,建议看这个up主的视频配置,讲解的很细…

695岛屿最大面积

题目 给定一个 row x col 的二维网格地图 grid ,其中:grid[i][j] 1 表示陆地, grid[i][j] 0 表示水域。 网格中的格子 水平和垂直 方向相连(对角线方向不相连)。整个网格被水完全包围,但其中恰好有一个…

逻辑回归简单案例分析--鸢尾花数据集

文章目录 1. IRIS数据集介绍2. 具体步骤2.1 手动将数据转化为numpy矩阵2.1.1 从csv文件数据构建Numpy数据2.1.2 模型的搭建与训练2.1.3 分类器评估2.1.4 分类器的分类报告总结2.1.5 用交叉验证(Cross Validation)来验证分类器性能2.1.6 完整代码&#xf…

copilot插件全解

COPILOT是一个基于AI的编程辅助工具,它可以帮助程序员自动编写代码,提高开发效率。COPILOT的插件主要是为了将其功能集成到不同的编程环境中,方便程序员使用。 目前,COPILOT支持多种编程环境,包括Visual Studio Code、…

钉钉审批流程解读

组织机构 部门 部门可以创建下级部门部门可以设置部门主管,可以是多人部门可以默认构建,沟通群可以设置部门信息,比如电话、简介可以设置部门的可见性,比如隐藏本部门,本部门将不会在组织机构、搜索,个人…

如何从格式化的 Windows 和 Mac 电脑硬盘恢复文件

格式化硬盘可为您提供全新的体验。它可以是硬盘驱动器定期维护的一部分,是清除不再使用的文件的一种方法,在某些情况下,它是处理逻辑损坏的万福玛利亚。但是,许多用户发现自己格式化了错误的分区或驱动器,或者后来意识…