基于天鹰算法优化的BP神经网络(预测应用) - 附代码

基于天鹰算法优化的BP神经网络(预测应用) - 附代码

文章目录

  • 基于天鹰算法优化的BP神经网络(预测应用) - 附代码
    • 1.数据介绍
    • 2.天鹰优化BP神经网络
      • 2.1 BP神经网络参数设置
      • 2.2 天鹰算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用天鹰算法优化BP神经网络并应用于预测。

1.数据介绍

本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据

2.天鹰优化BP神经网络

2.1 BP神经网络参数设置

神经网络参数如下:

%% 构造网络结构
%创建神经网络
inputnum = 2;     %inputnum  输入层节点数 2维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 1;     %outputnum  隐含层节点数

2.2 天鹰算法应用

天鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/123476675

天鹰算法的参数设置为:

popsize = 20;%种群数量
Max_iteration = 20;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:2*10 = 20; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:10*1 = 10;即hiddenum * outputnum;

第二层权值数量为:1;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 41;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( m s e ( T r a i n D a t a E r r o r ) + m e s ( T e s t D a t a E r r o r ) ) fitness = argmin(mse(TrainDataError) + mes(TestDataError)) fitness=argmin(mse(TrainDataError)+mes(TestDataError))
其中TrainDataError,TestDataError分别为训练集和测试集的预测误差。mse为求取均方误差函数,适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从天鹰算法的收敛曲线可以看到,整体误差是不断下降的,说明天鹰算法起到了优化的作用:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/59790.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[Android]JNI的基础知识

目录 1.什么是JNI 2.配置JNI开发环境NDK 3.创建Native C类型的项目 4. 了解CMakeLists.txt 文件 5.了解native-lib.cpp 文件 6.在 Android 的 MainActivity 中调用 native-lib.cpp 中实现的本地方法 1.什么是JNI JNI(Java Native Interface)是一…

消息中间件 介绍

MQ简介 MQ,Message queue,消息队列,就是指保存消息的一个容器。具体的定义这里就不类似于数据库、缓存等,用来保存数据的。当然,与数据库、缓存等产品比较,也有自己一些特点,具体的特点后文会做详细的介绍。 现在常用…

java八股文面试[JVM]——JVM内存结构2

知识来源: 【2023年面试】JVM内存模型如何分配的_哔哩哔哩_bilibili

Python文本终端GUI框架详解

今天笔者带大家,梳理几个常见的基于文本终端的 UI 框架,一睹为快! Curses 首先出场的是 Curses。 Curses 是一个能提供基于文本终端窗口功能的动态库,它可以: 使用整个屏幕 创建和管理一个窗口 使用 8 种不同的彩色 为程序提供…

计算机竞赛 基于Django与深度学习的股票预测系统

文章目录 0 前言1 课题背景2 实现效果3 Django框架4 数据整理5 模型准备和训练6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于Django与深度学习的股票预测系统 ** 该项目较为新颖,适合作为竞赛课题方向&#xff…

TypeScript配置-- 1. 新手处理TS文件红色波浪线的几种方式

Typescript 规范化了JS的项目开发,但是对一些项目的一些新手来说,确实是不怎么优好,譬如我:将我之前珍藏的封装JS代码,拿进了配置了tsconfig.json的vue3项目,在vscode下,出现了满屏的红色 &…

HTML总结2 [转]

以下转载和参考自&#xff1a;HTML 表单。 1、表格 可以通过 CSS 设置表格的样式&#xff1a; 如下为将上面table.lamp th,td样式中的padding注释掉&#xff0c;开启table.lamp中的padding的效果&#xff1a; 2、列表 3、导航栏 导航栏使用<ul>列表实现&#xff0c;…

iptables教程

iptables netfilter/iptables&#xff08;简称iptables&#xff09;是与2.4.x和2.6.x系列版本Linux内核集成的IP信息包过滤系统。 Iptables Tutorial 1、表和链 1.1、表 iptables会根据不同的数据包处理功能使用不同的规则表。它包括如下五个表&#xff1a;filter、nat和m…

table,设置 数据相同时, 合并列

<el-table :data"tableData" :span-method"objectSpanMethod" border style"width: 100%" show-summary><el-table-column type"index" label"序号" width"100" /><el-table-column prop"dat…

C语言练习题解析:挑战与突破,开启编程新篇章!(2)

&#x1f493;博客主页&#xff1a;江池俊的博客⏩收录专栏&#xff1a;C语言刷题专栏&#x1f449;专栏推荐&#xff1a;✅C语言初阶之路 ✅C语言进阶之路&#x1f4bb;代码仓库&#xff1a;江池俊的代码仓库&#x1f389;欢迎大家点赞&#x1f44d;评论&#x1f4dd;收藏⭐ 文…

加密的PDF文件,如何解密?

PDF文件带有打开密码、限制编辑&#xff0c;这两种密码设置了之后如何解密&#xff1f; 不管是打开密码或者是限制编辑&#xff0c;在知道密码的情况下&#xff0c;解密PDF密码&#xff0c;我们只需要在PDF编辑器中打开文件 – 属性 – 安全&#xff0c;将权限状态修改为无保护…

100天精通Golang(基础入门篇)——第19天:深入剖析Go语言中方法(Method)的妙用与实践

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to Golang Language.✨✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1…

【SQL】关系模型与查询和更新数据

一、关系模型 1.1 主键 主键是关系表中记录的唯一标识。主键的选取非常重要&#xff1a;主键不要带有业务含义&#xff0c;而应该使用BIGINT自增或者GUID类型。主键也不应该允许NULL。 可以使用多个列作为联合主键&#xff0c;但联合主键并不常用。 1.2 外键 FOREIGN KEY …

剪绳子c、c++实现

给你一根长度为 n 的绳子&#xff0c;请把绳子剪成整数长的 m 段&#xff08; m 、 n 都是整数&#xff0c; n > 1 并且 m > 1 &#xff0c; m < n &#xff09;&#xff0c;每段绳子的长度记为 k[1],...,k[m] 。请问 k[1]*k[2]*...*k[m] 可能的最大乘积是多少&#x…

函数(个人学习笔记黑马学习)

1、函数定义 #include <iostream> using namespace std;int add(int num1, int num2) {int sum num1 num2;return sum; }int main() {system("pause");return 0; } 2、函数的调用 #include <iostream> using namespace std;int add(int num1, int num2…

【DRONECAN】(三)WSL2 及 ubuntu20.04 CAN 驱动安装

【DRONECAN】&#xff08;三&#xff09;WSL2 及 ubuntu20.04 CAN 驱动安装 前言 这一篇文章主要介绍一下 WSL2 及 ubuntu20.04 CAN 驱动的安装&#xff0c;首先说一下介绍本文的目的。 大家肯定都接触过 ubuntu 系统&#xff0c;但是我们常用的操作系统都是 Windows&#x…

C++------map和set的使用

文章目录 关联式容器键值对树型结构的关联式容器set的介绍map的介绍 关联式容器 什么是关联式容器&#xff1f;它与序列式容器有什么区别&#xff1f; 关联式容器也是用来存储数据的&#xff0c;与序列式容器不同的是&#xff0c;其里面存储的是<key&#xff0c;value>结…

【拾枝杂谈】从游戏开发的角度来谈谈原神4.0更新

君兮_的个人主页 勤时当勉励 岁月不待人 C/C 游戏开发 Hello,米娜桑们&#xff0c;这里是君兮_&#xff0c;结合最近的学习内容和以后自己的目标&#xff0c;今天又开了杂谈这个新坑&#xff0c;分享一下我在学习游戏开发的成长和自己的游戏理解&#xff0c;当然现在还是一枚…

【LeetCode75】第三十九题 二叉树的右视图

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 题目给我们一棵二叉树&#xff0c;让我们返回站在二叉树右边从上到下看到的节点。 那实际上就是要我们对二叉树进行层序遍历&#xff0c…

108页石油石化5G智慧炼化厂整体方案PPT

导读:原文《108页石油石化5G智慧炼化厂整体方案PPT》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。以下是部分内容,