imgaug库指南(三):从入门到精通的【图像增强】之旅

引言

在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的关键所在。而imgaug,作为一个功能强大的图像增强库,为我们提供了简便且高效的方法来扩充数据集。本系列博客将带您深入了解如何运用imgaug进行图像增强,助您在深度学习的道路上更进一步。我们将从基础概念讲起,逐步引导您掌握各种变换方法,以及如何根据实际需求定制变换序列。让我们一起深入了解这个强大的工具,探索更多可能性,共同推动深度学习的发展。


前期回顾

链接主要内容
imgaug库指南(一):从入门到精通的【图像增强】之旅介绍了imgaug库的主要功能、安装方式、提供一个简单的数据增强示例(针对一副图像)
imgaug库指南(二):从入门到精通的【图像增强】之旅介绍了如何利用imgaug库对批量图像进行数据增强并可视化

在本博客中,我们将向您详细介绍imgaug库的数据增强方法 —— 高斯模糊。


高斯模糊(GaussianBlur)

功能介绍

iaa.GaussianBlurimgaug库中的一个函数,用于对图像进行高斯模糊处理。高斯模糊是一种图像处理技术,通过在图像上应用正态分布的模糊核来降低图像的清晰度。这种模糊效果可以用于多种应用场景,如减少图像噪声、实现图像柔化等。

语法

import imgaug.augmenters as iaaaug = iaa.GaussianBlur(sigma=(3, 3))
  • sigma:高斯模糊的标准差。可以是一个标量(使用相同的sigma),也可以是一个长度为2的元组(分别对应水平和垂直方向上的sigma)。

示例代码

import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 创建高斯模糊增强器
aug1 = iaa.GaussianBlur(sigma=(3, 3))
aug2 = iaa.GaussianBlur(sigma=(5, 5))
aug3 = iaa.GaussianBlur(sigma=(7, 7))# 对图像进行高斯模糊处理
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)# 展示原始图像和模糊后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Blurred Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Blurred Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Blurred Image3")
plt.show()

运行结果如下:

图1 原图及高斯模糊结果可视化

注意事项

  1. sigma参数控制模糊的程度,值越大,模糊效果越明显。在实际应用中,需要根据具体需求调整这个参数。
  2. 高斯模糊可能会对图像的边缘产生影响,因此在处理具有清晰边缘的图像时需要注意。
  3. 在处理大型图像时,高斯模糊可能会消耗较多的计算资源。因此,在性能要求较高的场景下,需要谨慎使用。
  4. 在展示或保存处理后的图像时,需要注意图像格式和色彩空间的问题。例如,在显示时可能需要转换为RGB模式,在保存时可能需要指定正确的格式和色彩深度。

小结

imgaug是一个强大的图像增强库,它可以帮助你创建出丰富多样的训练数据,从而改进你的深度学习模型的性能。通过定制变换序列和参数,你可以轻松地适应各种应用场景,从计算机视觉到医学影像分析。随着深度学习的发展,imgaug在未来将继续发挥重要作用。因此,将imgaug纳入你的数据增强工具箱是一个明智的选择。

参考链接


结尾

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见,因为这对我们来说意义非凡。
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果您觉得我们的博文给您带来了启发,那么,希望能为我们点个免费的赞/关注您的支持和鼓励是我们持续创作的动力
请放心,我们会持续努力创作,并不断优化博文质量,只为给带来更佳的阅读体验。
再次感谢的阅读,愿我们共同成长,共享智慧的果实!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/597646.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

prometheus与zabbix监控的对比介绍

一、普米与zabbix基本介绍 1、prometheus介绍 Prometheus的基本原理是Prometheus Server通过HTTP周期性抓取被监控组件的监控数据,任意组件只要提供对应的HTTP接口并且符合Prometheus定义的数据格式,就可以接入Prometheus监控。 工作流程大致分为收集数…

嵌入式Linux之MX6ULL裸机开发学习笔记(汇编LED灯点亮)

汇编LED驱动实验 1.驱动编写 首先创建在vscode上创建工作区,创建led.s汇编文件,然后编写以下程序 .global _start 全局标号 _start: /* 使能所有外设时钟 */ ldr r0,0x020c4068 CCGR0 ldr r1,0xffffffff 要向CCGR0写入的数据 str r1,[r0] 将0xff…

优化企业运营,深入探索SAP库存管理解决方案

SAP库存管理是SAP提供的一款领先的企业库存管理解决方案。它致力于帮助企业实现对库存的全面掌控,优化供应链管理,降低库存成本,提高客户满意度。这个功能强大的系统为企业提供了丰富的仓储管理功能,如库存盘点、物料追踪、供应商…

【LeetCode】150. 逆波兰表达式求值(ASCII码)

今日学习的文章链接和视频链接 leetcode题目地址:150. 逆波兰表达式求值 代码随想录题解地址:代码随想录 题目简介 即将后缀表达式转换成中缀表达式并计算。 给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。 …

【编译原理】期末预习PPT前四章笔记II

看了看学校的ppt,记的比较随意O.o 因为我的考试范围里边没有简答所以概念什么的没怎么记 没有简答只有选择真是太好了嘿嘿嘿 目录 I. 概述(好多字。。) 一、高级语言的分类 1、体裁 2、执行方式 二、各种语言的执行方式 三、编译程序…

读算法霸权笔记11_微目标

1. 脸书 1.1. 一份请愿书属于脸书了,而社交网络的算法会对如何最大限度地利用这份请愿书做出判断 1.1.1. 脸书的算法在决定谁能看到我的请愿书时会把所有因素都考虑在内 1.2. 通过改变信息推送的方式,脸书研究了我们…

智能分析网关V4智慧港口码头可视化视频智能监管方案

一、需求背景 近年来,水利港口码头正在进行智能化建设,现场管理已经是重中之重。港口作为货物、集装箱堆放及中转机构,具有昼夜不歇、天气多变、环境恶劣等特性,安全保卫工作显得更加重要。港口码头的巡检现场如何高效、快捷地对…

5G工业物联网网关:连接未来的智能工业

在当今数字化时代,工业物联网正迅速崛起,并引领着全球工业的数字转型。而5G工业物联网网关作为实现IIoT的关键基础设施,在连接未来的智能工业中发挥着举足轻重的作用。 什么是5G工业物联网网关 5G工业物联网网关是连接工业设备和5G网络的关键…

(湖科大教书匠)计算机网络微课堂(下)

第四章、网络层 网络层概述 网络层主要任务是实习网络互连,进而实现数据包在各网络之间的传输 因特网使用TCP/IP协议栈 由于TCP/IP协议栈的网络层使用网际协议IP,是整个协议栈的核心协议,因此TCP/IP协议栈的网络层常称为网际层 网络层提供…

SpringBoot整合sentinel

1、引入依赖 <dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-sentinel</artifactId> </dependency> 2、 配置文件添加 spring:cloud:sentinel:transport:dashboard: ip:8858 项目重启&#x…

【mujoco】Ubuntu20.04中解决mujoco报错raise error.MujocoDependencyError

【mujoco】Ubuntu20.04中解决mujoco报错raise error.MujocoDependencyError 文章目录 【mujoco】Ubuntu20.04中解决mujoco报错raise error.MujocoDependencyError1. 报错的具体情况2. 解决过程3. 其他问题3.1 ModuleNotFoundError: No module named OpenGL3.2 ModuleNotFoundEr…

第84讲:基于各种场景使用mysqldump逻辑备份数据库

文章目录 1.mysqldump备份工具的语法格式2.使用mysqldump进行全库备份3.备份单个库或者多个库的数据4.备份某个库下的单表或者多表的数据5.mysqldump备份数据库时必加的一些参数5.1.基本参数5.2.核心参数 6.mysqldump备份数据库时的一些其他参数 1.mysqldump备份工具的语法格式…

Docker Compose--部署SpringBoot项目--实战

原文网址&#xff1a;Docker Compose--部署SpringBoot项目--实战-CSDN博客 简介 本文用实战介绍Docker Compose部署SpringBoot项目。 1.创建SpringBoot项目 Controller package com.knife.example.controller;import io.swagger.annotations.Api; import io.swagger.annot…

HTTP基础知识总结

目录 一、什么是HTTP&#xff1f; 二、与HTTP有关的协议 三、HTTP请求特征 四、HTTP组成格式 五、HTTP标头 1.通用标头 2.实体标头 3.请求标头 4.响应标头 六、HTTP状态码分类 我们在日常测试过程中&#xff0c;也可以通过浏览器F12简单定位是前端问题还是后端问题&a…

KeyError: ‘model_state_dict‘

问题 加载模型权重文件时获取model_state_dict键失败 解决 单步调试发现保存模型权重时正确保存了该键值对&#xff0c;再次调试时发现莫名奇妙又没错了 首先确认保存模型时的状态字典键名&#xff1a;确保在保存模型权重时&#xff0c;正确地使用了 model.state_dict() 方法…

局部与整体的关联特性,如图所示

局部与整体的关联特性是指事物的局部部分与整体之间存在一定的关联关系。它强调整体是由局部构成&#xff0c;局部又反向影响整体。具体包括以下几个方面的特性&#xff1a; 互依性&#xff1a;局部与整体相互依赖&#xff0c;一个的变动会影响另一个的变动。局部的变化会对整体…

Python-CSV文件的存储

CSV文件存储 CSV其文件以纯文本形式存储表格数据。CSV文件是一个字符序列&#xff0c;可以由任意数目的记录组成&#xff0c;各种记录由某种换行符分隔开。它比Excel文件更加简洁&#xff0c;XLS文本是电子表格&#xff0c;包含文本、数值、公式和格式等内容&#xff0c;CSV中则…

Linux系统使用超详细(六)~进程管理

目录 一、认识进程 二、进程号 2.1.进程号概念 2.2.进程号作用 三、进程查看 3.1. ps命令&#xff1a; 3.2. top命令&#xff1a; 3.3. htop命令&#xff1a; 3.4. pstree命令&#xff1a; 3.5. pgrep命令&#xff1a; 四、进程状态 五、进程优先级 六、进程优先…

neo4j图数据库安装和测试

neo4j图数据库安装和测试 1. 下载合适的neo4j软件版本。 https://we-yun.com/doc/neo4j/ https://neo4j.com/deployment-center/#enterprise 2. 下载JAVAJDK 由于neo4j是一个用Java编写的图形数据库&#xff0c;因此在安装和运行Neo4j之前&#xff0c;需要先安装Java Developm…

真机调试HarmonyOS应用报错

问题表现&#xff1a; 01/04 19:00:01: Launching com.example.simplevideo $ hdc shell am force-stop com.example.simplevideo $ hdc shell bm uninstall com.example.simplevideo $ hdc file send E:\harmony\SimpleVideo\entry\build\default\outputs\default\entry-defau…