基于深度学习的PCB板缺陷检测系统(含UI界面、yolov8、Python代码、数据集)

请添加图片描述

在这里插入图片描述

项目介绍

项目中所用到的算法模型和数据集等信息如下:

算法模型:
    yolov8

    yolov8主要包含以下几种创新:
        1. 添加注意力机制(SECBAM等)
        2. 修改可变形卷积(DySnake-主干c3替换、DySnake-所有c3替换)

数据集:
    网上下载的数据集,详细介绍见数据集介绍部分。

以上是本套代码的整体算法架构和对目标检测模型的修改说明,这些模型修改可以为您的 毕设、作业等提供创新点和增强模型性能的功能

如果要是需要更换其他的检测模型,请私信。

注:本项目提供所用到的所有资源,包含 环境安装包、训练代码、测试代码、数据集、视频文件、 界面UI文件等。


项目简介

本文将详细介绍如何使用深度学习中的YOLOv8算法实现对车型的检测,且利用PyQt5设计了简约的系统UI界面。在界面中,您可以选择自己的视频文件、图片文件进行检测。此外,您还可以更换自己训练的yolov8模型,进行自己数据的检测。

该系统界面优美,检测精度高,功能强大。它具备多目标实时检测,同时可以自由选择感兴趣的检测目标。

本博文提供了完整的Python程序代码和使用教程,适合新入门的朋友参考。您可以在文末的下载链接中获取完整的代码资源文件。以下是本博文的目录:

目录

  • 项目介绍
  • 项目简介
  • 效果展示:
  • 🌟一、环境安装
  • 🌟二、数据集介绍
  • 🌟三、 目标检测介绍
    • yolov8相关介绍
  • 四、 yolov8训练步骤
    • 五、 yolov8评估步骤
    • 六、 训练结果
  • 🌟下载链接

效果展示:

功能:
1. 支持单张图片识别
2. 支持遍历文件夹识别
3. 支持识别视频文件
4. 支持结果导出(xls、csv两种格式)
5. 支持切换检测到的目标

基于深度学习的PCB板缺陷检测系统


🌟一、环境安装

本项目提供所有需要的环境安装包(python、pycharm、cuda、torch等),可以直接按照视频讲解进行安装。具体的安装流程见此视频:视频链接
环境安装视频是以车牌项目为例进行讲解的,但是可以适用于任何项目。

视频快进到 3:18 - 21:17,这段时间讲解的是环境安装,可直接快进到此处观看。
在这里插入图片描述

环境安装包可通过百度网盘下载:
链接:https://pan.baidu.com/s/17SZHeVZrpXsi513D-6KmQw?pwd=a0gi
提取码:a0gi
–来自百度网盘超级会员V6的分享

上面这个方法,是比较便捷的安装方式(省去了安装细节),按照我的视频步骤和提供的安装包安装即可,如果要是想要多学一点东西,可以按照下面的安装方式走一遍,会更加熟悉。

环境安装方法2:
追求快速安装环境的,只看上面即可!!!

下面列出了5个步骤,是完全从0开始安装(可以理解为是一台新电脑,没有任何环境),如果某些步骤已经安装过的可以跳过。下面的安装步骤带有详细的视频讲解和参考博客,一步一步来即可。另外视频中讲解的安装方法是通用的,可用于任何项目

  1. python环境安装:B站视频讲解
  2. cuda、cudnn安装:B站视频讲解
  3. torch安装: B站视频讲解
  4. pycharm安装: B站视频讲解
  5. 第三方依赖包安装: B站视频讲解

按照上面的步骤安装完环境后,就可以直接运行程序,看到效果了。


🌟二、数据集介绍

数据集总共包含下面6个类别,且已经分好 train、val、test文件夹,也提供转好的yolo格式的标注文件,可以直接使用。

missing_hole 				# 漏孔
mouse_bite  				# 鼠牙洞
open_circuit				# 开路
short       				# 短路
spur						# 毛刺
spurious_copper				# 杂铜

数据样式如下:
在这里插入图片描述


🌟三、 目标检测介绍

yolov8相关介绍

YOLOv8 是一个 SOTA 模型,它建立在以前 YOLO 版本的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。

不过 ultralytics 并没有直接将开源库命名为 YOLOv8,而是直接使用 ultralytics 这个词,原因是 ultralytics 将这个库定位为算法框架,而非某一个特定算法,一个主要特点是可扩展性。其希望这个库不仅仅能够用于 YOLO 系列模型,而是能够支持非 YOLO 模型以及分类分割姿态估计等各类任务。
总而言之,ultralytics 开源库的两个主要优点是:

  • 融合众多当前 SOTA 技术于一体

  • 未来将支持其他 YOLO 系列以及 YOLO 之外的更多算法

在这里插入图片描述

网络结构如下:
在这里插入图片描述


四、 yolov8训练步骤

此代码的训练步骤极其简单,不需要修改代码,直接通过cmd就可以命令运行,命令都已写好,直接复制即可,命令如下图:
在这里插入图片描述
下面这条命令是 训练 添加 CBAM 注意力机制的命令,复制下来,直接就可以运行,看到训练效果(需要将coco_NEU-DET.yaml替换为自己的数据集的yaml文件)。

python ./train.py --epochs 500 --cfg models/yolov5s-CBAM-2.yaml --hyp data/hyps/hyp.scratch-low.yaml --data data/coco_NEU-DET.yaml --weight weights/yolov5s.pt --workers 4 --batch 16

执行完上述命令后,即可完成训练,训练过程如下:
在这里插入图片描述

下面是对命令中各个参数的详细解释说明:

  • python: 这是Python解释器的命令行执行器,用于执行后续的Python脚本。

  • ./train.py: 这是要执行的Python脚本文件的路径和名称,它是用于训练目标检测模型的脚本。

  • --epochs 500: 这是训练的总轮数(epochs),指定为500,表示训练将运行500个轮次。

  • --cfg models/yolov5s-CBAM-2.yaml: 这是YOLOv5模型的配置文件的路径和名称,它指定了模型的结构和参数设置。

  • --hyp data/hyps/hyp.scratch-low.yaml: 这是超参数文件的路径和名称,它包含了训练过程中的各种超参数设置,如学习率、权重衰减等。

  • --data data/coco_NEU-DET.yaml: 这是数据集的配置文件的路径和名称,它指定了训练数据集的相关信息,如类别标签、图像路径等。

  • --weight weights/yolov5s.pt: 这是预训练权重文件的路径和名称,用于加载已经训练好的模型权重以便继续训练或进行迁移学习。

  • --workers 4: 这是用于数据加载的工作进程数,指定为4,表示使用4个工作进程来加速数据加载。

  • --batch 16: 这是每个批次的样本数,指定为16,表示每个训练批次将包含16个样本。

通过运行上面这个命令,您将使用YOLOv5模型对目标检测任务进行训练,训练500个轮次,使用指定的配置文件、超参数文件、数据集配置文件和预训练权重。同时,使用4个工作进程来加速数据加载,并且每个训练批次包含16个样本。


五、 yolov8评估步骤

评估步骤同训练步骤一样,执行1行语句即可,注意--weights需要变为自己想要测试的模型路径, VOC_helmet.yaml替换为自己的数据集的yaml文件。

python ./val.py --data  data/VOC_PCB.yaml --weights ../weights/yolov5s.yaml/weights/best.pt

评估结果如下:
在这里插入图片描述


六、 训练结果

我们每次训练后,会在 run/train 文件夹下出现一系列的文件,如下图所示:
在这里插入图片描述


🌟下载链接

   该代码采用Pycharm+Python3.8开发,经过测试能成功运行,运行界面的主程序为main.py,提供用到的所有程序。为确保程序顺利运行,请按照requirements.txt配置Python依赖包的版本。Python版本:3.8,为避免出现运行报错,请勿使用其他版本,详见requirements.txt文件;

    若您想获得博文中涉及的实现完整全部程序文件(包括训练代码、测试代码、训练数据、测试数据、视频,py、 UI文件等,如下图),这里已打包上传至博主的面包多平台,可通过下方项目讲解链接中的视频简介部分下载,完整文件截图如下:
在这里插入图片描述

项目演示讲解链接:B站

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/597123.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pod探针

Pod进阶: 探针* Poststart Prestop pod的声明周期开始: k8s的pod重启策略: Always deployment的yaml三种模式都可以,不论正常退出还是非正常退出都重启 OnFailure:只有状态码非零才会重启,正常退出事不重启的 …

软件测试基础篇(超详细整理)

1、软件测试的生命周期 回顾:需求分析、计划、设计、编码、测试、运行维护 软件测试的生命周期: 需求分析→测试计划→ 测试设计→ 测试开发→ 测试执行→ 测试评估 需求分析:分析需求的正确性,合理性。细化需求,得…

(读书笔记)网络是如何连接的

1.1 生成 HTTP 请求消息 浏览器是一个具备多种客户端功能的综合性客户端软件,因此它需要 一些东西来判断应该使用其中哪种功能来访问相应的数据,而各种不同的 URL(Uniform Resource Locator,统一资源定位符。) 就是用来干这个的,比如访问 Web 服务器时用“http:”,而访…

报错“‘vue-cli-service’ 不是内部或外部命令,也不是可运行的程序

根据提供的引用内容,报错"‘vue-cli-service’ 不是内部或外部命令,也不是可运行的程序"的原因是项目的依赖项vue/cli-service未安装。解决方法是在项目目录下执行命令npm i -D vue/cli-service来安装vue/cli-service依赖。 # 在项目目录下执…

2024.1.4 Spark Core ,RDD ,算子

目录 一 . RDD(弹性分布式数据集) 二 . RDD的五个特性 三 .RDD的五大特点 四 . 算子 五 . 分区算子 ,重分区算子 , 聚合算子 ,关联算子 分区算子: 重分区算子 聚合算子 关联算子: 一 . RDD(弹性分布式数据集) Resilent弹性 Distrbuted分布式 Dataset数据集…

vue day5

1、自定义指令 2、v-loading指令封装&#xff08;蒙层&#xff09; 3、插槽 默认插槽 使用组件时&#xff0c;传入具体标签内容 4、插槽 后备内容&#xff08;默认值&#xff09; 5、具名插槽 6、作用域插槽 7、案例 App.vue&#xff1a; <template><d…

ubuntu桥接方式上网

vmvare:VMware Workstation 17 Pro ubuntu: Ubuntu 14.04.6 LTS window10 下面是我的电脑配置 下面是ubuntu虚拟机的配置 vi /etc/network/interfaces 下面的gateway就是window -ipconfig 截图里的默认网关 auto lo iface lo inet loopbackauto eth0 iface eth0 inet stat…

前端实战第一期:悬浮动画

悬浮动画 像这样的悬浮动画该怎么做&#xff0c;让我们按照以下步骤完成 步骤&#xff1a; 先把HTML内容做起来&#xff0c;用button属性创建一个按钮&#xff0c;按钮内写上悬浮效果 <button classbtn>悬浮动画</button>在style标签内设置样式,先设置盒子大小&…

Linux 命令tail

命令作用 tail 命令用于显示文件的末尾内容&#xff0c;默认显示文件的最后 10 行。通常情况下&#xff0c;tail 命令用于实时查看动态日志文件&#xff0c;可以使用 -f 参数跟踪文件内容的变化。 语法 tail [选项] [文件名] 参数 以 log.txt 为例演示参数效果 -n -linesK…

大数据开发的专业术语

&#x1f339;作者主页&#xff1a;青花锁 &#x1f339;简介&#xff1a;Java领域优质创作者&#x1f3c6;、Java微服务架构公号作者&#x1f604; &#x1f339;简历模板、学习资料、面试题库、技术互助 &#x1f339;文末获取联系方式 &#x1f4dd; 系列专栏目录 [Java项…

【LeetCode:11. 盛最多水的容器 | 双指针】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

Vue 3 中的 watch 函数:实战指南

Vue.js 是一个功能丰富的前端框架&#xff0c;它允许开发者以声明式的方式创建动态和反应式的用户界面。Vue 3 引入的 Composition API 增强了代码的组织和复用&#xff0c;其中 watch 函数是一个非常有用的特性。本文将通过一系列的示例&#xff0c;展示如何在 Vue 3 应用程序…

全国计算机等级考试| 二级Python | 真题及解析(4)

一、选择题 1.以下对 Python 程序缩进格式描述错误的选项是( ) A.不需要缩进的代码顶行写,前面不能留空白 B.缩进可以用 tab 键实现,也可以用多个空格实现 C.严格的缩进可以约束程序结构,可以多层缩进 D.缩进是用来格式美化 Python 程序的 2.下列Python程…

电话号码查询系统的设计与实现(txt存储版本)

实验项目名称: 电话号码查询系统的设计与实现 实验目的与要求: 1.基础知识: &#xff08;1&#xff09;掌握数据结构中的查找、排序等算法相关知识。 &#xff08;2&#xff09;掌握 C 或 C语言中程序设计的方法。 2.程序功能: (1)自选存储结构&#xff08;顺序表或哈希…

阶段十-分布式-任务调度

第一章 定时任务概述 在项目中开发定时任务应该一种比较常见的需求&#xff0c;在 Java 中开发定时任务主要有三种解决方案&#xff1a;一是使用JDK 自带的 Timer&#xff0c;二是使用 Spring Task&#xff0c;三是使用第三方组件 Quartz Timer 是 JDK 自带的定时任务工具,其…

感知与认知的碰撞,大模型时代的智能文档处理范式

目录 0 写在前面1 GPT4-V&#xff1a;拓宽文档认知边界2 大语言模型的文档感知缺陷3 大一统文档图像处理范式3.1 像素级OCR任务3.2 OCR大一统模型3.3 长文档理解与应用 4 总结抽奖福利 0 写在前面 由中国图象图形学学会青年工作委员会发起的第十九届中国图象图形学学会青年科学…

二叉排序树的创建、插入、查找和删除【数据结构】

二叉排序树 若它的左子树不空&#xff0c;则左子树上所有结点的值均小于它根结点的值。若它的右子树不空&#xff0c;则右子树上所有结点的值均大于它根结点的值。它的左、右树又分为⼆叉排序树 二叉排序树也叫二叉查找树、二叉搜索树 二叉排序树的创建、插入、查找和删除 …

015、控制流运算符match

1. 控制流运算符match Rust中有一个异常强大的控制流运算符&#xff1a;match&#xff0c;它允许将一个值与一系列的模式相比较&#xff0c;并根据匹配的模式执行相应代码。模式可由字面量、变量名、通配符和许多其他东西组成&#xff1b;后文会详细介绍所有不同种类的模式及它…

MySQL中的事务, 特性及应用

事务 1 &#xff09;概述 只有 innodb 引擎支持事务&#xff0c;myisam 是不支持的事务的本质是原子性操作&#xff0c;不可分割&#xff0c;打包多个操作成为一个原子 2 &#xff09;事务的四大特性(ACID) 原子性 Atomicity 原子性是指事务包含的所有操作不可分割要成功一…

ElasticSearch使用Grafana监控服务状态-Docker版

文章目录 版本信息构建docker-compose.yml参数说明 创建Prometheus配置文件启动验证配置Grafana导入监控模板模板说明 参考资料 版本信息 ElasticSearch&#xff1a;7.14.2 elasticsearch_exporter&#xff1a;1.7.0&#xff08;latest&#xff09; 下载地址&#xff1a;http…