3D目标检测(教程+代码)

随着计算机视觉技术的不断发展,3D目标检测成为了一个备受关注的研究领域。与传统的2D目标检测相比,3D目标检测可以在三维空间中对物体进行定位和识别,具有更高的准确性和适用性。本文将介绍3D目标检测的相关概念、方法和代码实现。

一、3D目标检测的基本概念
1. 3D目标检测是什么?

3D目标检测是指在三维场景中检测和识别物体的过程。与传统的2D目标检测相比,3D目标检测可以提供更加精确的物体位置和姿态信息,适用于许多实际应用,例如自动驾驶、机器人导航、增强现实等领域。

2. 3D目标检测的难点是什么?

3D目标检测的难点主要包括以下几个方面:

(1)数据获取困难:获取三维场景数据需要使用专门的传感器或摄像机,成本较高,数据集数量有限。

(2)数据处理复杂:三维场景数据需要进行点云处理、网格化等操作,对算法和计算资源要求较高。

(3)数据标注困难:标注三维物体需要进行立体标注,标注成本较高,标注人员需要专业知识和技能。

二、3D目标检测的常见方法
1. 基于深度学习的3D目标检测

深度学习是当前3D目标检测领域的主流方法。通常采用点云或三维网格作为输入数据,在经过卷积、池化等操作后,使用全连接层输出物体的类别、位置和姿态信息。常见的深度学习模型包括PointNet、VoxelNet、Frustum PointNet等。

2. 基于几何学的3D目标检测

基于几何学的3D目标检测方法通常基于传统的计算几何或机器视觉算法,例如支持向量机、随机森林等。这些方法通常使用手工设计的特征和规则来实现目标检测和识别功能。虽然这些方法在一些领域和场景下仍然具有优势,但在复杂场景下的推广和应用受到了限制。

三、3D目标检测的代码实现

下面将介绍一个基于深度学习的3D目标检测代码实现案例,使用的是PointNet++算法。

1. 环境搭建

本案例使用Python语言和PyTorch深度学习框架,需要安装numpy、h5py、scipy、tqdm等库。同时,需要安装CUDA和cuDNN等支持GPU加速的工具。

2. 数据预处理

本案例使用KITTI数据集进行实验,需要对原始数据进行预处理,包括点云转换、数据划分、标注等操作。具体操作可参考官方文档或相关教程。

3. 模型训练

本案例使用PointNet++算法进行模型训练,代码实现可参考GitHub上的开源代码。在训练过程中需要设置网络结构、损失函数、优化器等参数,并使用训练集和验证集进行训练和测试。训练过程需要耗费较长时间,需要充分利用GPU加速和分布式训练等技术。

4. 模型评估

在模型训练完成后,需要对其进行评估和测试。本案例使用验证集和测试集进行评估,计算准确率、召回率、F1值等指标,并可使用混淆矩阵和ROC曲线进行可视化分析。

四、总结

本文介绍了3D目标检测的基本概念、常见方法和代码实现。随着计算机视觉技术的不断发展,3D目标检测在自动驾驶、机器人导航、增强现实等领域具有广泛的应用前景。未来的研究将致力于进一步提高算法的性能和效率,以满足实际应用的需求。

概述

3d Objectron是一种适用于日常物品的移动实时3D物体检测解决方案。它可以检测2D图像中的物体,并通过在Objectron数据集上训练的机器学习(ML)模型估计它们的姿态.
下图为模型训练后推理的结果!

算法

我们建立了两个机器学习管道来从单个RGB图像预测物体的3D边界框:一个是两阶段管道,另一个是单阶段管道。两阶段管道比单阶段管道快3倍,准确率相似或更好。单阶段管道擅长检测多个物体,而两阶段管道适用于单个主导物体。
单价段训练模型:

我们的单级流技术路线图,如图所示,模型骨干具有基于MobileNetv2的编码器-解码器架构。我们采用多任务学习方法,同时预测物体的形状、检测和回归。形状任务根据可用的真实注释,例如分割,预测物体的形状信号。如果在训练数据中没有形状注释,则此步骤是可选的。对于检测任务,我们使用注释的边界框并适合高斯到盒子,其中心在盒子重心处,标准偏差与盒子大小成比例。检测的目标是预测具有峰值表示物体中心位置的此分布。回归任务估计八个边界框顶点的二维投影。为了获得边界框的最终3D坐标,我们利用了一个成熟的姿态估计算法(EPnP)。它可以恢复物体的3D边界框,而不需要先验知识。给定3D边界框,我们可以轻松地计算物体的姿态和大小。该模型足够轻,可以在移动设备上实时运行(在Adreno 650移动GPU上以26 FPS的速度运行)。

主要代码和结果
结果:
 

获取现实世界的3D训练数据
尽管由于自动驾驶汽车依赖于3D捕捉传感器(如LIDAR)的研究的流行,有大量的街景3D数据可用,但是对于更精细的日常物品的具有真实3D标注的数据集非常有限。为了解决这个问题,我们开发了一种新颖的数据管道,利用移动增强现实(AR)会话数据。随着ARCore和ARKit的到来,数亿部智能手机现在具有AR功能,并且能够在AR会话期间捕获附加信息,包括相机姿态、稀疏3D点云、估计的照明和平面表面。
为了标注地面真实数据,我们构建了一个新颖的注释工具,可用于AR会话数据,允许注释者快速为物体标注3D边界框。此工具使用分屏视图,在左侧显示覆盖了3D边界框的2D视频帧,以及在右侧显示3D点云、相机位置和检测到的平面的视图。注释者在3D视图中绘制3D边界框,并通过检查2D视频帧的投影来验证其位置。对于静态对象,我们只需要在一个帧中标注一个对象,并使用AR会话数据的地面真实相机姿态信息将其传播到所有帧,这使得该过程高效。

主要代码:
 

with mp_objectron.Objectron(static_image_mode=True,max_num_objects=5,min_detection_confidence=0.5,model_name='Shoe') as objectron:for idx, file in enumerate(IMAGE_FILES):image = cv2.imread(file)
##全部代码请联系---------->qq1309399183<-----------------------# Convert the BGR image to RGB and process it with MediaPipe Objectron.results = objectron.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))if not results.detected_objects:print(f'No box landmarks detected on {file}')continueprint(f'Box landmarks of {file}:')annotated_image = image.copy()for detected_object in results.detected_objects:mp_drawing.draw_landmarks(annotated_image, detected_object.landmarks_2d, mp_objectron.BOX_CONNECTIONS)mp_drawing.draw_axis(annotated_image, detected_object.rotation,detected_object.translation)cv2.imwrite('/tmp/annotated_image' + str(idx) + '.png', annotated_image)QQ767172261

全部代码可交流私信

主要讲解:主要调用库函数,然后可以对视频流或者读取电脑摄像头,真正做到方便实用,高效快捷,实时显示结果 实施输出模型,可以毕业设计用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/596720.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023年12月青少年软件编程Python等级考试(三级)真题试卷

2023年12月青少年软件编程Python等级考试&#xff08;三级&#xff09;真题试卷 题目总数&#xff1a;38 总分数&#xff1a;100 选择题 第 1 题 单选题 一个非零的二进制正整数&#xff0c;在其末尾添加两个“0”&#xff0c;则该新数将是原数的&#xff1f;&#x…

nuxt3 env文件、全局变量处理

有两种方向 通过配置nuxt.config.ts Nuxt提供的钩子函数&#xff0c;实现全局变量的获取 runtimeconfig env文件往runtimeconfig放入内容 useAppConfig 通过env文件配置来获取服务端全局变量&#xff0c;客户端通过vite.define实现 nuxt.config.ts Nuxt钩子 1. runtim…

Win32 TEXT()宏学习

之前学习了_T()宏&#xff1b; _T()是MFC的&#xff1b; TEXT()是win32的&#xff1b; _T("")定义于tchar.h&#xff1b; TEXT宏是windows程序设计中经常遇到的宏&#xff0c;定义在 <winnt.h>中&#xff1b; 如果使用UNICODE字符集&#xff0c;则TEXT&…

kubernetes(三)

文章目录 1. k8s弹性伸缩1.1 安装heapster监控1.2 弹性伸缩使用和验证 2. 持久化存储2.1 emptyDir 1. k8s弹性伸缩 k8s弹性伸缩&#xff0c;需要附加插件heapster 1.1 安装heapster监控 使用heapster(低版本)可以监控pod压力大不大 使用hpa调节pod数量&#xff0c;自动扩容或…

chatgpt3.5和chatgpt4的区别

ChatGPT4是基于GPT-3模型的一个实例&#xff0c;但ChatGPT4已经进行了进一步的改进和优化。GPT-3&#xff08;第三代生成式预训练模型&#xff09;是OpenAl开发的一个大型语言模型&#xff0c;它在很多自然语言处理任务中表现出色。 ChatGPT4继承了GPT-3的基本架构和能力&…

清风数学建模笔记-聚类算法

K-maens算法&#xff1a; 算法的原理&#xff1a; 在论文中时&#xff0c;可以把一些可以流程化的算法的流程图加上去 优点&#xff1a; 缺点&#xff1a; 点容易受异常值的影响&#xff0c;且受影响较大 k-means算法&#xff1a; 使用SPSS进行聚类分析&#xff1a; S默认使用…

CCNP课程实验-07-OSPF-Trouble-Shooting

目录 实验条件网络拓朴 环境配置开始排错错点1&#xff1a;R1-R2之间认证不匹配错误2&#xff1a;hello包的时间配置不匹配错误3&#xff1a;R2的e0/1接口区域配置不正确错误4&#xff1a;R4的e0/1接口没有配置进OSPF错误5&#xff1a;R2的区域1没有配置成特殊区域错误6&#x…

深度学习 | 多模态算法

AIGC也就是AI内容生成已经成为新一轮人工智能发展的热点和必然趋势&#xff0c;它使得大规模高质量的创作变得更加容易。 一 、InstructGPT模型 1、GPT系列回顾 chatGPT和InstructGPT都使用了指示学习和基于人工反馈的强化学习来指导模型的训练&#xff0c;不同点仅仅是在采集数…

Python 面向对象(1)

#什么是面向对象 面向对象是一种编程范式&#xff0c;它将程序中的数据和操作封装在一个对象中&#xff0c;从而使得程序更加模块化、可重用和易于维护。在面向对象编程中&#xff0c;对象是类的实例化&#xff0c;类是一种抽象的数据类型&#xff0c;它定义了一组属性和方法。…

用Python实现组件化大屏

实现组件化大屏主要涉及到前端和后端的开发。这里&#xff0c;我会为你提供一个简单的Python后端示例&#xff0c;以及一个前端组件化的示例。 1. Python后端 首先&#xff0c;你需要一个Python后端来提供数据。这里我们使用Flask作为示例&#xff1a; python复制代码 from …

c语言:用结构体求平均分|练习题

一、题目 用c语言的结构体&#xff0c;求4位学生成绩的平均分 如图&#xff1a; 二、代码截图【带注释】 三、源代码【带注释】 #include <stdio.h> float aver();//声明平均分函数 void printScore();//声明打印函数 //设置结构体&#xff0c; struct student { …

JMeter CSV 参数文件的使用方法

.在 JMeter 测试中&#xff0c;参数化是非常重要的&#xff0c;参数化允许我们模拟真实世界中的各种情况。本文我们将探讨如何在 JMeter 中使用 CSV 参数文件。 创建 CSV 文件 首先&#xff0c;我们需要创建一个逗号分隔的值&#xff08;CSV&#xff09;文件&#xff0c;其中…

Unity Hub 无法激活许可证

烦死了~ &#x1f635;‍&#x1f4ab; 卸载UnityHub, 安装旧版本&#x1f448;激活许可证&#xff0c; 如果出现旧版本无法识别Editor的情况需要卸载了再装最新版本的UnityHub

CompressAI:深度学习与传统图像压缩

1、图像压缩算法原理 传统的有损图像压缩方法&#xff0c;如JPEG &#xff0c; JPEG2000 &#xff0c; HEVC或AV1或VVC&#xff0c;在类似的编码方案上进行了迭代改进&#xff1a;将图像划分为像素块&#xff0c;使用变换域通过线性变换(例如:DCT或DWT)去相关空间频率&#xf…

Unity 获取组件宽高的方法

在Unity中&#xff0c;我们要获取组件的宽高&#xff0c;具体方法要看组件的类型。 假如是2D UI组件&#xff0c;那么我们可以通过RectTransform的Rect属性获取&#xff0c;如获取Image 组件宽高&#xff1a; Image image GetComponent<Image>(); RectTransform rectT…

SpringBoot使用支付宝沙箱环境进行仿真支付

目录 一、进入支付宝开发平台—沙箱环境 二、点击沙箱进入沙箱环境 三、Java二维码生成技术 1、导入依赖 2、生成指定url对应的二维码图片 四、支付接口 1、保存好沙箱应用里面的公钥私钥 2、 测试接口 3、扫码 4、买家结果 5、卖家结果 五、回调接口 1、使用内网…

el-select 多选,选有一个未选择的选项

多选有未选择这个选项后。会出现一个情况&#xff0c;绑定的数据为[‘未选择’,‘cpu1’,‘cpu2’] 进行一个处理&#xff0c;选择&#xff08;未选择&#xff09;就清除&#xff08;其它的选择&#xff09;&#xff0c;选择&#xff08;cpu&#xff09;就清除&#xff08;未选…

运营笔记记录

运营笔记 要想读懂一本书&#xff0c;学会书中的能力。就一定要了解书中的观点。拆分出框架。将认知与方法拆分。落地方法不足的一定要查阅其他书籍或者资料将落地的方法补齐。认知是框架。真正需要精通并使用的是具体的落地方法。 一、世界观 运营的核心思想&#xff1a;产…

【Java反射】反射获取Class、Constructor、Field、Method的方式

package com.coding.reflect;/*** time 2023-02-22-10:16*/public class Car {//属性private String name;private int age;private String color;//无参数构造public Car() {}//有参数构造public Car(String name, int age, String color) {this.name name;this.age age;thi…

RocketMQ快速入门

RocketMQ快速入门 RocketMQ提供了发送多种发送消息的模式&#xff0c;例如同步消息&#xff0c;异步消息&#xff0c;顺序消息&#xff0c;延迟消息&#xff0c;事务消息等&#xff0c;我们一一学习 1.1 消息发送和监听的流程 我们先搞清楚消息发送和监听的流程&#xff0c;然…