【Matlab】PSO-BP 基于粒子群算法优化BP神经网络的数据时序预测(附代码)

 资源下载: https://download.csdn.net/download/vvoennvv/88689096

一,概述

        PSO-BP算法是一种结合了粒子群算法(PSO)和BP神经网络的方法,用于数据时序预测。下面是PSO-BP算法的原理和过程:

        1. 数据准备:首先,将时序数据按照一定的时间窗口划分为输入序列和输出序列。例如,可以将过去几个时间步的数值作为输入,预测未来一个时间步的数值作为输出。

        2. 初始化粒子群:对于PSO-BP算法,需要初始化一组粒子,每个粒子代表了BP神经网络的一组权重和阈值参数。每个粒子都有自己的位置和速度。

        3. 评估适应度:对于每个粒子,需要根据其位置的权重和阈值参数构建BP神经网络,并使用历史数据进行训练。训练完成后,使用预测误差的指标(如均方误差)来评估粒子的适应度。

        4. 更新粒子的个体最优位置:根据评估的适应度值,更新每个粒子的个体最优位置。保留具有最佳适应度的解作为粒子的个体最优位置。

        5. 更新群体最优位置:根据所有粒子的个体最优位置,确定全局最优位置,即群体最优位置。这是整个粒子群中适应度最好的解。

        6. 更新粒子的速度和位置:根据粒子群算法的速度更新公式,更新粒子的速度和位置。速度的更新会考虑到个体最优位置和群体最优位置之间的差异。

        7. 使用BP算法进行训练:基于更新后的权重和阈值参数,使用BP算法对神经网络进行训练。这一步是为了进一步优化粒子的解,使得BP神经网络能够更好地捕捉时序数据的模式和趋势。

        8. 重复步骤3-7:重复执行步骤3到步骤7,直到满足停止条件(如达到最大迭代次数或达到一定的预测精度要求)。

        通过粒子群的迭代和优化过程,PSO-BP算法可以不断调整BP神经网络的权重和阈值参数,以最小化预测误差,并实现对时序数据的有效预测。这种结合了全局搜索和局部搜索的方法可以提高数据时序预测的准确性,适用于许多实际应用场景。但是需要注意,PSO-BP算法的性能还受到超参数选择和训练数据的质量等因素的影响,需要进行合理调整和优化。
 

二,代码

代码中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel。

部分代码如下:

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 15;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测%%  构造数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  节点个数
inputnum  = size(p_train, 1);  % 输入层节点数
hiddennum = 5;                 % 隐藏层节点数
outputnum = size(t_train, 1);  % 输出层节点数%%  建立网络
net = newff(p_train, t_train, hiddennum);%%  设置训练参数
net.trainParam.epochs     = 1000;      % 训练次数
net.trainParam.goal       = 1e-6;      % 目标误差
net.trainParam.lr         = 0.01;      % 学习率
net.trainParam.showWindow = 0;         % 关闭窗口%%  参数初始化
c1      = 4.494;       % 学习因子
c2      = 4.494;       % 学习因子
maxgen  =   30;        % 种群更新次数  
sizepop =    5;        % 种群规模
Vmax    =  1.0;        % 最大速度
Vmin    = -1.0;        % 最小速度
popmax  =  2.0;        % 最大边界
popmin  = -2.0;        % 最小边界%%  节点总数
numsum = inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum;for i = 1 : sizepoppop(i, :) = rands(1, numsum);  % 初始化种群V(i, :) = rands(1, numsum);    % 初始化速度fitness(i) = fun(pop(i, :), hiddennum, net, p_train, t_train);
end%%  个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值......

三,运行结果

资源下载: https://download.csdn.net/download/vvoennvv/88689096

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/592400.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

继承和多态

全局变量,int monster 10000:定义英雄类hero,受保护的属性string name,int hp,int attck;公有的无参构造,有参构造,虚成员函数 void Ak(blood-0),法师类继承自英雄类,私有属性 int p_atk50;重写…

Github 2024-01-03 开源项目日报 Top10

根据Github Trendings的统计,今日(2024-01-03统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Python项目3TypeScript项目3Jupyter Notebook项目1Dart项目1C项目1Rust项目1 系统设计指南 创建周期&#x…

计算机毕业设计 SpringBoot的停车场管理系统 Javaweb项目 Java实战项目 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点…

堆排序 Heapsort

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概…

简易机器学习笔记(四)初识卷积神经网络

前言 第一次写卷积神经网络,也是照着paddlepaddle的官方文档抄,这里简单讲解一下心得。 首先我们要知道之前写的那些东西都是什么,之前写的我们称之为简单神经网络,也就是简单一层连接输出和输出,通过前向计算和逆向…

Simple Facebook Sign-In

简单的Facebook登录为Android、iOS、Windows、Mac、通用Windows平台(UWP)和Unity制作的WebGL应用程序提供了基于OAuth 2.0的Facebook登录。 优点: ● 跨平台游戏和应用程序的跨平台用户身份验证 ● 无插件,无第三方库,无依赖● 对建筑规模没有影响 ● 客户端-服务器应…

solidity显示以太坊美元价格

看过以太坊白皮书的都知道,以太坊比较比特币而言所提升的地方中,我认为最重要的一点就是能够访问外部的数据,这一点在赌博、金融领域应用会很广泛,但是区块链是一个确定的系统,包括里面的所有数值包括交易ID等都是确定…

OS 7--DNS配置+Apache发布网站

环境准备 centOS 7 1.配置DNS 1.1 域名为lianxi.com 1.2 为WWW服务器、FTP服务器、NEWS服务器做域名解析 1)安装DNS yum -y install bind bind-utils (如果安装不上,就把磁盘在重洗挂载一下) 2)修改DNS配置文件 vim /etc/resolv.conf…

车载 Android之 核心服务 - CarPropertyService 解析

重要类的源码文件名及位置: CarPropertyManager.java packages/services/Car/car-lib/src/android/car/hardware/property/ CarPropertyService.java packages/services/Car/service/src/com/android/car/ 类的介绍: CarPropertyManager&#xff1a…

航芯ACM32G103开发板评测 02-GPIO输入输出

航芯ACM32G103开发板评测 02-GPIO输入输出 航芯ACM32G103开发板评测 GPIO输入输出应用 软硬件平台 ACM32G103 Board开发板 MDK-ARM Keil GPIO输出典型应用——点灯 GPIO输入典型应用——按键 GPIO 功能概述 GPIO 是通用输入/输出(General Purpose I/O&#x…

[Flutter]WindowsOS中相关配置

Flutter项目在Windows平台上如何配置 目录 Flutter项目在Windows平台上如何配置 写在开头 正文 1、OS准备 2、编译环境准备 ① 下载AndroidStudio ② 下载dart ③ 下载flutter ④ 下载并安装VS ⑤ 在AS中配置dart和flutter 3、配置中遇到的问题 写在结尾 写在开头…

C++ stack使用、模拟实现、OJ题

目录 一、介绍 二、常用函数 三、模拟实现 四、OJ练习题 1、最小栈 2、栈的压入、弹出序列 3、逆波兰表达式(后缀转中缀) 4、中缀转后缀思路 5、用栈实现队列 一、介绍 stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除…

自动驾驶论文

文章目录 一、Convolutional Social Pooling for Vehicle Trajectory Prediction二、QCNet:Query-Centric Trajectory Prediction三、VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation 一、Convolutional Social Pooling for Vehicl…

iOS 小组件开发

iOS14之后Apple引入了新的WidgetKit,舍弃了原有额TodayExtension。 开发准备: 新的WidgetExtension只能通过SwiftUI进行开发; Widget有三种尺寸:systemSmall、 systemMedium、systemLarge,三种尺寸对应固定的UI类型布…

BIND-DNS配置介绍

一、主要配置文件 /etc/named.conf options { //Option 段全部配置 listen-on port 53 { 127.0.0.1; };//表示BIND将在53端口监听,若需要对所有IP进行监听,则修改为// listen-on port 53 { any; }; directory "/var/named"…

(六)数码管动态刷新

文章目录 如何实现利用人眼的余晖效应(100hz无闪烁)1ms刷一个数码管 8个看起来就是一块亮的 结合前面内容进行操作前面内容传送门:如何段选原理图代码写法这里借助isp复制共阴数码管码值 如何位选原理图代码写法 如何消隐在每次 段选 赋值之前…

K8S集群部署MySql

挂载MySQL数据卷 在k8s集群中挂载MySQL数据卷 需要安装一个NFS。 在主节点安装NFS yum install -y nfs-utils rpcbind 在主节点创建目录 mkdir -p /nfs chmod 777 /nfs 更改归属组与用户 chown -R nfsnobody:nfsnobody /nfs 配置共享目录 echo "/nfs *(insecure,rw,s…

Linux操作系统基础(3):Linux终端的使用

1. Linux终端的介绍 Linux 终端是指在 Linux 操作系统下用于与用户进行交互的命令行界面(基于文本的交互)。它是用户与操作系统进行直接交互的主要方式,可以通过输入命令来执行各种操作,如文件管理、进程控制、系统配置等。 Lin…

【WPF.NET开发】WPF中的输入

本文内容 输入 API事件路由处理输入事件文本输入触摸和操作侧重点鼠标位置鼠标捕获命令输入系统和基元素 Windows Presentation Foundation (WPF) 子系统提供了一个功能强大的 API,用于从各种设备(包括鼠标、键盘、触摸和触笔)获取输入。 本…

CTF流量分析经典例题详解

目录 入门题型 题目:Cephalopod(图片提取) 题目:特殊后门(icmp协议信息传输) 题目:手机热点(蓝牙传输协议obex,数据提取) 题目:想蹭网先解开密码(无线密码破解) 进阶题型 题目:抓到一只苍蝇(数据包筛选,数据提…