mysql 单表 操作 最大条数验证 以及优化

1、背景

        开车的多年老司机,是不是经常听到过,“mysql 单表最好不要超过 2000w”,“单表超过 2000w 就要考虑数据迁移了”,“你这个表数据都马上要到 2000w 了,难怪查询速度慢”。

2、实验

实验一把看看…

建一张表

 
CREATE TABLE person(id int NOT NULL AUTO_INCREMENT PRIMARY KEY comment '主键',person_id tinyint not null comment '用户id',person_name VARCHAR(200) comment '用户名称',gmt_create datetime comment '创建时间',gmt_modified datetime comment '修改时间') comment '人员信息表';

  1. 插入一条数据。另外,公众 号Java精选,回复java面试,获取面试资料,支持在线刷题。
insert into person values(1,1,'user_1', NOW(), now())

利用 mysql 伪列 rownum 设置伪列起始点为 1

 
  1. select (@i:=@i+1) as rownum, person_name from person, (select @i:=100) as init;

  2. set @i=1;

运行下面的 sql,连续执行 20 次,就是 2 的 20 次方约等于 100w 的数据;执行 23 次就是 2 的 23 次方约等于 800w , 如此下去即可实现千万测试数据的插入,如果不想翻倍翻倍的增加数据,而是想少量,少量的增加,有个技巧,就是在 SQL 的后面增加 where 条件,如 id > 某一个值去控制增加的数据量即可。

 
  1. insert into person(id, person_id, person_name, gmt_create, gmt_modified)select @i:=@i+1,left(rand()*10,10) as person_id,concat('user_',@i%2048),date_add(gmt_create,interval + @i*cast(rand()*100 as signed) SECOND),date_add(date_add(gmt_modified,interval +@i*cast(rand()*100 as signed) SECOND), interval + cast(rand()*1000000 as signed) SECOND)from person;

此处需要注意的是,也许你在执行到近 800w 或者 1000w 数据的时候,会报错:The total number of locks exceeds the lock table size,这是由于你的临时表内存设置的不够大,只需要扩大一下设置参数即可。

 
  1. SET GLOBAL tmp_table_size =512*1024*1024; (512M)

  2. SET global innodb_buffer_pool_size= 1*1024*1024*1024 (1G);

先来看一组测试数据,这组数据是在 mysql8.0 的版本,并且是在我本机上,由于本机还跑着 idea , 浏览器等各种工具,所以并不是机器配置就是用于数据库配置,所以测试数据只限于参考。

ad94b4e3303d1d51610cd2355b878386.png

247a652b20c6c7223a33662d1c1b86f6.png

看到这组数据似乎好像真的和标题对应,当数据达到 2000w 以后,查询时长急剧上升;难道这就是铁律吗?

那下面我们就来看看这个建议值 2kw 是怎么来的?

3、单表数量限制

首先我们先想想数据库单表行数最大多大?

 
  1. CREATE TABLE person(

  2. id int(10) NOT NULL AUTO_INCREMENT PRIMARY KEY comment '主键',

  3. person_id tinyint not null comment '用户id',

  4. person_name VARCHAR(200) comment '用户名称',

  5. gmt_create datetime comment '创建时间',

  6. gmt_modified datetime comment '修改时间'

  7. ) comment '人员信息表';

看看上面的建表 sql,id 是主键,本身就是唯一的,也就是说主键的大小可以限制表的上限,如果主键声明 int 大小,也就是 32 位,那么支持 2^32-1 ~~21 亿;如果是 bigint,那就是 2^62-1 ?(36893488147419103232),难以想象这个的多大了,一般还没有到这个限制之前,可能数据库已经爆满了!!

有人统计过,如果建表的时候,自增字段选择无符号的 bigint , 那么自增长最大值是 18446744073709551615,按照一秒新增一条记录的速度,大约什么时候能用完?

026b11e86c2a8acc887f25ed24fe2eb2.png

4、表空间

下面我们再来看看索引的结构,对了,我们下面讲内容都是基于 Innodb 引擎的,大家都知道 Innodb 的索引内部用的是 B+ 树

334e8571e3715b41e3b01da83c79a22d.png

这张表数据,在硬盘上存储也是类似如此的,它实际是放在一个叫 person.ibd (innodb data)的文件中,也叫做表空间;虽然数据表中,他们看起来是一条连着一条,但是实际上在文件中它被分成很多小份的数据页,而且每一份都是 16K。

大概就像下面这样,当然这只是我们抽象出来的,在表空间中还有段、区、组等很多概念,但是我们需要跳出来看。面试宝典:https://www.yoodb.com

a2cca29ab37ba8d0f50001131e34ee3e.png

5、页的数据结构

因为每个页只有 16K 的大小,但是如果数据很多,那一页肯定就放不下这些数据,那数据肯定就会被分到其他的页中,所以为了把这些页关联起来,肯定就会有记录前后页地址,方便找到对应页;同时每页都是唯一的,那就会需要有一个唯一标志来标记页,就是页号;

页中会记录数据所以会存在读写操作,读写操作会存在中断或者其他异常导致数据不全等,那就会需要有校验机制,所以里面还有会校验码,而读操作最重要的就是效率问题,如果按照记录一个个进行遍历,那肯定是很费劲的,所以这里面还会为数据生成对应的页目录(Page Directory); 所以实际页的内部结构像是下面这样的。

f59a05379d352fee3ab47150dc246316.png

从图中可以看出,一个 InnoDB 数据页的存储空间大致被划分成了 7 个部分,有的部分占用的字节数是确定的,有的部分占用的字节数是不确定的。

在页的 7 个组成部分中,我们自己存储的记录会按照我们指定的行格式存储到 User Records 部分。

但是在一开始生成页的时候,其实并没有 User Records 这个部分,每当我们插入一条记录,都会从 Free Space 部分,也就是尚未使用的存储空间中申请一个记录大小的空间划分到 User Records 部分,当 Free Space 部分的空间全部被 User Records 部分替代掉之后,也就意味着这个页使用完了,如果还有新的记录插入的话,就需要去申请新的页了。这个过程的图示如下。

60dfb6b460d0b6bfa09ba49554de7840.png

刚刚上面说到了数据的新增的过程。

那下面就来说说,数据的查找过程,假如我们需要查找一条记录,我们可以把表空间中的每一页都加载到内存中,然后对记录挨个判断是不是我们想要的,在数据量小的时候,没啥问题,内存也可以撑;但是现实就是这么残酷,不会给你这个局面;为了解决这问题,mysql 中就有了索引的概念;面试宝典:https://www.yoodb.com 大家都知道索引能够加快数据的查询,那到底是怎么个回事呢?下面我就来看看。

6、索引的数据结构

在 mysql 中索引的数据结构和刚刚描述的页几乎是一模一样的,而且大小也是 16K, 但是在索引页中记录的是页 (数据页,索引页) 的最小主键 id 和页号,以及在索引页中增加了层级的信息,从 0 开始往上算,所以页与页之间就有了上下层级的概念。

e2cedc13c0420dd924389e67f0f638b7.png

看到这个图之后,是不是有点似曾相似的感觉,是不是像一棵二叉树啊,对,没错!它就是一棵树,只不过我们在这里只是简单画了三个节点,2 层结构的而已,如果数据多了,可能就会扩展到 3 层的树,这个就是我们常说的 B+ 树,最下面那一层的 page level =0, 也就是叶子节点,其余都是非叶子节点。

ae89f15f68b6d680b5c2e0acf31b47c7.png

看上图中,我们是单拿一个节点来看,首先它是一个非叶子节点(索引页),在它的内容区中有 id 和 页号地址两部分,这个 id 是对应页中记录的最小记录 id 值,页号地址是指向对应页的指针;而数据页与此几乎大同小异,区别在于数据页记录的是真实的行数据而不是页地址,而且 id 的也是顺序的。

7、单表建议值

下面我们就以 3 层,2 分叉(实际中是 M 分叉)的图例来说明一下查找一个行数据的过程。

比如说我们需要查找一个 id=6 的行数据,因为在非叶子节点中存放的是页号和该页最小的 id,所以我们从顶层开始对比,首先看页号 10 中的目录,有 [id=1, 页号 = 20],[id=5, 页号 = 30], 说明左侧节点最小 id 为 1,右侧节点最小 id 是 5;6>5, 那按照二分法查找的规则,肯定就往右侧节点继续查找,找到页号 30 的节点后,发现这个节点还有子节点(非叶子节点),那就继续比对,同理,6>5&&6<7, 所以找到了页号 60,找到页号 60 之后,发现此节点为叶子节点(数据节点),于是将此页数据加载至内存进行一一对比,结果找到了 id=6 的数据行。

从上述的过程中发现,我们为了查找 id=6 的数据,总共查询了三个页,如果三个页都在磁盘中(未提前加载至内存),那么最多需要经历三次的磁盘 IO。

需要注意的是,图中的页号只是个示例,实际情况下并不是连续的,在磁盘中存储也不一定是顺序的。

3f94d932fe8163864ce57d7e1e65032b.png

至此,我们大概已经了解了表的数据是怎么个结构了,也大概知道查询数据是个怎么的过程了,这样我们也就能大概估算这样的结构能存放多少数据了。

从上面的图解我们知道 B+ 数的叶子节点才是存在数据的,而非叶子节点是用来存放索引数据的。

所以,同样一个 16K 的页,非叶子节点里的每条数据都指向新的页,而新的页有两种可能

  • 如果是叶子节点,那么里面就是一行行的数据

  • 如果是非叶子节点的话,那么就会继续指向新的页

假设

  • 非叶子节点内指向其他页的数量为 x

  • 叶子节点内能容纳的数据行数为 y

  • B+ 数的层数为 z

如下图中所示

Total =x^(z-1) *y 也就是说总数会等于 x 的 z-1 次方 与 Y 的乘积。

2e1905676fc2c0615881deb7854e89f7.png

X =?

在文章的开头已经介绍了页的结构,索引也也不例外,都会有 File Header (38 byte)、Page Header (56 Byte)、Infimum + Supermum(26 byte)、File Trailer(8byte), 再加上页目录,大概 1k 左右,我们就当做它就是 1K, 那整个页的大小是 16K, 剩下 15k 用于存数据,在索引页中主要记录的是主键与页号,主键我们假设是 Bigint (8 byte), 而页号也是固定的(4Byte), 那么索引页中的一条数据也就是 12byte; 所以 x=15*1024/12≈1280 行。

Y=?

叶子节点和非叶子节点的结构是一样的,同理,能放数据的空间也是 15k;但是叶子节点中存放的是真正的行数据,这个影响的因素就会多很多,比如,字段的类型,字段的数量;每行数据占用空间越大,页中所放的行数量就会越少;这边我们暂时按一条行数据 1k 来算,那一页就能存下 15 条,Y≈15。

算到这边了,是不是心里已经有谱了啊

根据上述的公式,Total =x^(z-1) y,已知 x=1280,y=15

假设 B+ 树是两层,那就是 Z =2, Total = (1280 ^1 )15 = 19200

假设 B+ 树是三层,那就是 Z =3, Total = (1280 ^2) *15 = 24576000 (约 2.45kw)

哎呀,妈呀!这不是正好就是文章开头说的最大行数建议值 2000w 嘛!对的,一般 B+ 数的层级最多也就是 3 层,你试想一下,如果是 4 层,除了查询的时候磁盘 IO 次数会增加,而且这个 Total 值会是多少,大概应该是 3 百多亿吧,也不太合理,所以,3 层应该是比较合理的一个值。

到这里难道就完了?

我们刚刚在说 Y 的值时候假设的是 1K ,那比如我实际当行的数据占用空间不是 1K , 而是 5K, 那么单个数据页最多只能放下 3 条数据

同样,还是按照 Z=3 的值来计算,那 Total = (1280 ^2) *3 = 4915200 (近 500w)

所以,在保持相同的层级(相似查询性能)的情况下,在行数据大小不同的情况下,其实这个最大建议值也是不同的,而且影响查询性能的还有很多其他因素,比如,数据库版本,服务器配置,sql 的编写等等,MySQL 为了提高性能,会将表的索引装载到内存中。在 InnoDB buffer size 足够的情况下,其能完成全加载进内存,查询不会有问题。但是,当单表数据库到达某个量级的上限时,导致内存无法存储其索引,使得之后的 SQL 查询会产生磁盘 IO,从而导致性能下降,所以增加硬件配置(比如把内存当磁盘使),可能会带来立竿见影的性能提升哈。

8、总结

1. Mysql 的表数据是以页的形式存放的,页在磁盘中不一定是连续的。

2. 页的空间是 16K, 并不是所有的空间都是用来存放数据的,会有一些固定的信息,如,页头,页尾,页码,校验码等等。

3. 在 B+ 树中,叶子节点和非叶子节点的数据结构是一样的,区别在于,叶子节点存放的是实际的行数据,而非叶子节点存放的是主键和页号。

4. 索引结构不会影响单表最大行数,2kw 也只是推荐值,超过了这个值可能会导致 B + 树层级更高,影响查询性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/592169.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度学习(学习记录)

题型&#xff1a;填空题判断题30分、简答题20分、计算题20分、综合题&#xff08;30分&#xff09; 综合题&#xff08;解决实际工程问题&#xff0c;不考实验、不考代码、考思想&#xff09; 一、深度学习绪论&#xff08;非重点不做考察&#xff09; 1、传统机器学习&…

视频融合云平台/智慧监控平台EassyCVR告警警告出错是什么原因?该如何解决?

视频集中存储/云存储/视频监控管理平台EasyCVR能在复杂的网络环境中&#xff0c;将分散的各类视频资源进行统一汇聚、整合、集中管理&#xff0c;实现视频资源的鉴权管理、按需调阅、全网分发、智能分析等。AI智能/大数据视频分析EasyCVR平台已经广泛应用在工地、工厂、园区、楼…

Axure骚操作:【制作可暂停与不可暂停进度加载条】

目录 一、不可暂停进度条 1.1 前期准备 1.2 效果假想 1.3 适用场景 1.4 实现步骤 &#xff08;1&#xff09;除按钮外的元件设置隐藏 &#xff08;2&#xff09;给按钮添加交互 &#xff08;3&#xff09;给变量值文本标签添加交互 &#xff08;4&#xff09;给进度条矩…

怎么快速修复mfc140.dll文件?解决mfc140.dll缺失的方法

面对计算机报告的 ​mfc140.dll​ 文件遗失错误&#xff0c;这通常表明系统中缺少一个关键的动态链接库文件&#xff0c;该文件对于运行以 Microsoft Foundation Class (MFC) 库编写的程序十分重要&#xff0c;尤其是那些需要图形界面的应用程序和一些游戏。若没有这个文件&…

每日一练:LeeCode-739. 每日温度(中)【单调栈】

本文是力扣LeeCode-739. 每日温度&#xff08;中&#xff09; 学习与理解过程&#xff0c;本文仅做学习之用&#xff0c;对本题感兴趣的小伙伴可以出门左拐LeeCode。 给定一个整数数组 temperatures &#xff0c;表示每天的温度&#xff0c;返回一个数组 answer &#xff0c;其…

是否需要跟上鸿蒙(OpenHarmony)开发岗位热潮?

前言 自打华为2019年发布鸿蒙操作系统以来&#xff0c;网上各种声音百家争鸣。尤其是2023年发布会公布的鸿蒙4.0宣称不再支持Android&#xff0c;更激烈的讨论随之而来。 本文没有宏大的叙事&#xff0c;只有基于现实的考量。 通过本文&#xff0c;你将了解到&#xff1a; Har…

虚幻UE 材质-进阶边界混合之WAT世界对齐纹理

边界混合前篇&#xff1a;虚幻UE 材质-边界混合之PDO像素深度偏移量 上一篇主要讲材质相似或者不同的两个物体之间的边界混合 这一篇主要讲自建材质且相同的两个物体之间的边界混合 文章目录 一、世界对齐纹理二、世界对齐纹理实验1、制作材质 三、进一步优化 一、世界对齐纹理…

Unity ShaderGraph 技能冷却转圈效果

Unity ShaderGraph 技能冷却转圈效果 前言项目场景布置代码编写ShaderGraph 连线总结 参考 前言 遇到一个需求&#xff0c;要展示技能冷却的圆形遮罩效果。 项目 场景布置 代码编写 Shader核心的就两句 // 将uv坐标系的原点移到纹理中心 float2 uv i.uv - float2(0.5, 0…

IIS通过ARR实现负载均衡

一、实现整体方式介绍 项目中部署在windows服务器上的项目,需要部署负载均衡,本来想用nginx来配置的,奈何iis上有几个项目,把80端口和443端口占用了,nginx就用不了了(因为通过域名访问的,必须要用80和443端口),只能通过IIS的方式实现了。 这里用2个服务在一台机器上…

【心得】PHP文件包含高级利用攻击面个人笔记

目录 一、nginx日志文件包含 二、临时文件包含 三、php的session文件包含 四、pear文件包含 五 、远程文件包含 文件包含 include "/var/www/html/flag.php"; 一 文件名可控 $file$_GET[file]; include $file.".php"; //用php伪协议 &#xff0…

【一文入门】Git常用命令集锦--分支操作和版本管理篇

前言 Git 是一种分布式版本控制系统&#xff0c;可以帮助团队协作开发、管理和维护代码&#xff0c;提高代码质量和效率&#xff0c;掌握常用版本管理命令可以帮助我们更好地管理代码变更和历史记录。下面我将介绍开发中常用的一些Git分支操作和版本管理命令 1 分支操作 1.1 …

PowerBI:如何在以SharePoint文件做为数据源?

问题描述&#xff1a; 有朋友最近询问&#xff0c;在PowerBI中如何以SharePoint中的文件做为数据源&#xff0c;进行报告的设计开发&#xff1f; 今天抽一些时间&#xff0c;为大家做一个样例&#xff0c;供大家参考。 解决方案&#xff1a; 找到将要使用的SharePoint中文件…

Alice Bob推出16量子比特量子处理单元——“Helium 1”

​&#xff08;图片来源&#xff1a;网络&#xff09; 容错量子计算机硬件开发商Alice & Bob宣布已成功流片一款新芯片“Helium 1”&#xff0c;希望能借助该芯片降低随着量子比特数增加而提高的错误率&#xff0c;这是该公司第一个纠错逻辑量子比特&#xff08;纠错量子计…

test ui-04-testcomplete 入门介绍

About TestComplete TestComplete是一款适用于各种应用程序类型和技术的自动化测试环境&#xff0c;包括&#xff08;但不限于&#xff09;Windows、.NET、WPF、Visual C、Visual Basic、Delphi、CBuilder、Java以及Web应用程序和服务。 TestComplete既适用于功能测试&#x…

k8s的声明式资源管理

在k8s当中支持两种声明资源的方式&#xff1a; 1、 yaml格式&#xff1a;主要用于和管理资源对象 2、 json格式&#xff1a;主要用于在API接口之间进行消息传递 声明式管理方法(yaml)文件 1、 适合对资源的修改操作 2、 声明式管理依赖于yaml文件&#xff0c;所有的内容都…

DDD+SOA的事件驱动微服务读写分离架构

DDD DDD是Eric Evans于2003年出版的书名&#xff0c;同时也是这个架构设计方法名的起源 Eric Evans “领域驱动设计之父”&#xff0c;世界杰出软件建模专家。 他创建了Domain Language公司&#xff0c;致力于帮助公司机构创建与业务紧密相关的软件。 他在世界各地宣讲领域驱动…

DrGraph原理示教 - OpenCV 4 功能 - 二值化

二值化&#xff0c;也就是处理结果为0或1&#xff0c;当然是针对图像的各像素而言的 1或0&#xff0c;对应于有无&#xff0c;也就是留下有用的&#xff0c;删除无用的&#xff0c;有用的部分&#xff0c;就是关心的部分 在图像处理中&#xff0c;也不仅仅只是1或0&#xff0c;…

test dbtest-02-Liquibase 是一个数据库变更管理工具

拓展阅读 DbUnit-01-数据库测试工具入门介绍 database tool-01-flyway 数据库迁移工具介绍 什么是 Liquibase&#xff1f; Liquibase 是一种开源的数据库架构变更管理解决方案&#xff0c;它使你能够轻松地管理数据库变更的修订版本。 Liquibase使得参与应用程序发布流程的…

element-ui table-自定义表格某列的表头样式或者功能

自带表格 自定义表格某列的表头样式或者功能 <el-table><el-table-column :prop"date">//自定义表身每行数据<template slot-scope"scope">{{scope.row[scope.column.label] - ? - : scope.row[scope.column.label]}}</template>…

Java经典框架之SpringSecurity

SpringSecurity Java 是第一大编程语言和开发平台。它有助于企业降低成本、缩短开发周期、推动创新以及改善应用服务。如今全球有数百万开发人员运行着超过 51 亿个 Java 虚拟机&#xff0c;Java 仍是企业和开发人员的首选开发平台。 课程内容的介绍 1. SpringSecurity基本应用…