关于人体姿态检测模型,我们前期也介绍过了很多相关的模型,比如基于Yolo-NAS的姿态检测以及基于YOLOv8的人体姿态检测,而人体姿态估计一直是计算机视觉任务中比较重要的一个模型。但是基于YOLO系列的人体姿态检测模型需要较大的算力,且很难在CPU模型上快速的运行。
基于mediapipe的人体姿态检测模型,可以检测图片或者视频流中的人体姿态检测,最重要的是可以在CPU上面快速运行,且可以运行在移动终端设备上,大大提高了模型的使用。mediapipe模型的姿态检测模型包含2个模型
关于人体姿态检测模型,我们前期也介绍过了很多相关的模型,比如基于Yolo-NAS的姿态检测以及基于YOLOv8的人体姿态检测,而人体姿态估计一直是计算机视觉任务中比较重要的一个模型。但是基于YOLO系列的人体姿态检测模型需要较大的算力,且很难在CPU模型上快速的运行。
基于mediapipe的人体姿态检测模型,可以检测图片或者视频流中的人体姿态检测,最重要的是可以在CPU上面快速运行,且可以运行在移动终端设备上,大大提高了模型的使用。mediapipe模型的姿态检测模型包含2个模型
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/591610.shtml
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!