基于EMD的滚动轴承故障诊断算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1EMD的基本原理

固有模态函数(IMF)

筛分过程

4.2 基于EMD的滚动轴承故障诊断算法

信号预处理

EMD分解

特征提取

故障诊断

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

.......................................................................
axes(handles.axes5) 
[x,t,ssf,yy,fxs]=plotspec2(IMF(1,:),1/fs);
plot(t,x)   
xlabel('Sample number');
ylabel(['imf(',num2str(1),')']); 
title(['imf(',num2str(1),')信号']);
xlim([0,t(end)]);axes(handles.axes7) 
plot(ssf,abs(fxs))         % plot magnitude spectrum
xlabel('频率'); 
ylabel('幅度')   % label the axes
title(['imf(',num2str(1),')频谱']);axes(handles.axes8) 
[yt,Vm]=func_baoluo(IMF(1,:),fs,1);
[maxv,maxl]=max(Vm);
hold on
plot(yt(maxl),maxv,'r*');
title(['imf(',num2str(1),')包络谱']);
xlim([0,500]);axes(handles.axes9) 
[x,t,ssf,yy,fxs]=plotspec2(IMF(2,:),1/fs);
plot(t,x)   
xlabel('Sample number');
ylabel(['imf(',num2str(2),')']); 
title(['imf(',num2str(2),')信号']);
xlim([0,t(end)]);axes(handles.axes10) 
plot(ssf,abs(fxs))         % plot magnitude spectrum
xlabel('频率'); 
ylabel('幅度')   % label the axes
title(['imf(',num2str(2),')频谱']);axes(handles.axes11) 
[yt,Vm]=func_baoluo(IMF(2,:),fs,1);
[maxv,maxl]=max(Vm);
hold on
plot(yt(maxl),maxv,'r*');
title(['imf(',num2str(2),')包络谱']);
xlim([0,500]);if LEVELview>=3
figure;
for i=1:LEVELview[x,t,ssf,yy,fxs]=plotspec2(IMF(i,:),1/fs);subplot(LEVEL,3,3*i-2);plot(t,x)   xlabel('Sample number');ylabel(['imf(',num2str(i),')']); title(['imf(',num2str(i),')信号']);xlim([0,t(end)]);subplot(LEVEL,3,3*i-1);plot(ssf,abs(fxs))         % plot magnitude spectrumxlabel('频率'); ylabel('幅度')   % label the axestitle(['imf(',num2str(i),')频谱']);subplot(LEVEL,3,3*i);[yt,Vm]=func_baoluo(IMF(i,:),fs,1);[maxv,maxl]=max(Vm);maxvhold onplot(yt(maxl),maxv,'r*');title(['imf(',num2str(i),')包络谱']);xlim([0,500]);end
end% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton4 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
clc;
clear;
close all;% --- Executes on button press in pushbutton5.
function pushbutton5_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton5 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
parameters;figure;
for i=1:LEVEL
y_cum = cumest(IMF(i,:)',4,512);subplot(LEVEL,2,2*i-1);plot(t,x)   xlabel('Sample number');ylabel(['imf(',num2str(i),')']); title(['imf(',num2str(i),')信号']);xlim([0,t(end)]);subplot(LEVEL,2,2*i);plot(y_cum)   title(['imf(',num2str(i),')高阶谱']);
end
17_013m

4.算法理论概述

        基于经验模态分解(Empirical Mode Decomposition,EMD)的滚动轴承故障诊断算法是一种有效的非平稳信号处理方法,特别适用于处理非线性、非平稳的振动信号。该方法通过自适应地将复杂信号分解为一系列固有模态函数(Intrinsic Mode Functions,IMFs),进而提取出信号的时频特征,为滚动轴承的故障诊断提供有力支持。

4.1EMD的基本原理

        EMD方法的核心思想是根据信号自身的局部时域特性,自适应地将其分解为一系列固有模态函数。每个IMF代表信号中不同频率尺度的振荡模式,且具有明确的物理意义。

固有模态函数(IMF)

固有模态函数是满足以下两个条件的函数:

  1. 在整个数据序列中,极值点(包括极大值点和极小值点)的数量与过零点的数量相等或最多相差一个。
  2. 在任意时刻,由局部极大值点定义的上包络线和由局部极小值点定义的下包络线的均值为零。

筛分过程

EMD通过以下步骤对信号进行筛分,得到一系列IMF:

4.2 基于EMD的滚动轴承故障诊断算法

信号预处理

        首先,对采集到的滚动轴承振动信号进行预处理,包括降噪、去趋势等,以减少噪声和其他干扰因素对故障诊断的影响。

EMD分解

        将预处理后的信号作为输入,应用EMD方法进行分解,得到一系列IMF。每个IMF代表信号中不同频率尺度的振荡模式,反映了滚动轴承不同故障特征的信息。

特征提取

        从分解得到的IMFs中提取出与滚动轴承故障相关的特征。常用的特征包括IMF的能量、均方根值、峰值、峭度等。这些特征能够有效地描述滚动轴承的状态和故障类型。

故障诊断

        利用提取的特征构建故障诊断模型实现对滚动轴承故障类型的自动识别和诊断。

        为了验证基于EMD的滚动轴承故障诊断算法的有效性,可以采用实验数据进行验证。首先,采集不同状态下(正常、不同故障类型)的滚动轴承振动信号;然后,应用EMD方法进行信号分解和特征提取;最后,利用提取的特征训练故障诊断模型,并对测试数据进行故障诊断。通过比较诊断结果与真实故障类型的符合程度,评估算法的性能和准确性。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/590729.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot 实现Execl 导入导出

1、引包 <dependency><groupId>cn.afterturn</groupId><artifactId>easypoi-base</artifactId><version>3.0.3</version></dependency><dependency><groupId>cn.afterturn</groupId><artifactId>easy…

【复现】FreeU以及结合stable diffusion

code&#xff1a;GitHub - ChenyangSi/FreeU: FreeU: Free Lunch in Diffusion U-Net 才发现AnimateDiff更新v3了&#xff0c;以及又发了篇CVPR的改进工作&#xff1a; 在这个版本中&#xff0c;我们通过域适配器LoRA对图像模型进行了微调&#xff0c;以便在推理时具有更大的灵…

MySQL 高级(进阶) SQL 语句

目录 一、实验环境准备 二、MySQL高阶查询 1、语句与命令 2、实验实操 三、MySQL函数 1、语句与命令 2、实验操作 一、实验环境准备 #创建两个数据表&#xff0c;为实验提供环境&#xff1a; use kgc; #选择数据库&#xff0c;有则直接使用 无则按照以下步骤自建即可…

WPF+Halcon 培训项目实战(8-9):WPF+Halcon初次开发

文章目录 前言相关链接项目专栏运行环境匹配图片WPF Halcon组件HSmartWindowControlWPF绑定读取图片运行代码运行结果 抖动问题解决运行结果 绘制矩形绘制图像会消失 绘制对象绑定事件拖动事件 前言 为了更好地去学习WPFHalcon&#xff0c;我决定去报个班学一下。原因无非是想…

nginx安装和配置

目录 1.安装 2.配置 3.最小配置说明 4. nginx 默认访问路径 1.安装 使用 epel 源安装 先安装 yum 的扩展包 yum install epel-release -y 再安装 nginx yum install nginx -y 在启动nginx 前先关闭防火墙 systemctl stop firewalld 取消防火墙开机自启 systemctl di…

Self-attention学习笔记(Self Attention、multi-head self attention)

李宏毅机器学习Transformer Self Attention学习笔记记录一下几个方面的内容 1、Self Attention解决了什么问题2、Self Attention 的实现方法以及网络结构Multi-head Self Attentionpositional encoding 3、Self Attention 方法的应用4、Self Attention 与CNN以及RNN对比 1、Se…

基于grpc从零开始搭建一个准生产分布式应用(8) - 01 - 附:GRPC公共库源码

开始前必读&#xff1a;​​基于grpc从零开始搭建一个准生产分布式应用(0) - quickStart​​ common包中的源码&#xff0c;因后续要用所以一次性全建好了。 一、common工程完整结构 二、引入依赖包 <?xml version"1.0" encoding"UTF-8"?> <p…

【linux】cat的基本使用

cat是一个常用的命令&#xff0c;用来显示文本的内容&#xff0c;合并和创建文本文件 类似命令还有显示文件开头的内容&#xff1a; 【linux】head的用法 输出文件开头的内容-CSDN博客 显示文件末尾的内容&#xff1a; 【linux】tail的基本使用-CSDN博客 当我们想到了想要…

Zookeeper-Zookeeper选举源码

看源码方法&#xff1a; 1、先使用&#xff1a;先看官方文档快速掌握框架的基本使用 2、抓主线&#xff1a;找一个demo入手&#xff0c;顺藤摸瓜快速静态看一遍框架的主线源码&#xff0c;画出源码主流程图&#xff0c;切勿一开始就陷入源码的细枝末节&#xff0c;否则会把自…

Primavera Unifier 项目控制延伸:Phase Gate理论:3/3

继续上一篇阶段Gate的具体内容 https://campin.blog.csdn.net/article/details/127827681https://campin.blog.csdn.net/article/details/127827681 阶段 3 研发 前述阶段的计划和安排都要在研发阶段执行起来&#xff0c;同时&#xff0c;最重要的产品设计和开发部分也需要在…

系统学习Python——装饰器:函数装饰器-[对方法进行装饰:基础知识]

分类目录&#xff1a;《系统学习Python》总目录 我们在前面的文章中编写了第一个基于类的tracer函数装饰器的时候&#xff0c;我们简单地假设它也应该适用于任何方法一一一被装饰的方法应该同样地工作&#xff0c;并且自带的self实例参数应该直接包含在*args的前面。但这一假设…

计算机基础面试题 |04.精选计算机基础面试题

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

python打开文件的方式比较

open(addr,w) 打开之后文件无论以前有什么&#xff0c;打开后都要清空 /// open(addr,r) 文件打开后&#xff0c;不删除以前内容

多人协同开发git flow,创建初始化项目版本

文章目录 多人协同开发git flow&#xff0c;创建初始化项目版本1.gitee创建组织模拟多人协同开发2.git tag 打标签3.git push origin --tags 多人协同开发git flow&#xff0c;创建初始化项目版本 1.gitee创建组织模拟多人协同开发 组织中新建仓库 推送代码到我们组织的仓库 2…

STM32与TB6612电机驱动器的基础入门教程

TB6612是一款常用的双路直流电机驱动芯片&#xff0c;适用于小型机器人以及其他需要控制电机方向和转速的应用。在STM32微控制器的配合下&#xff0c;可以实现对TB6612电机驱动器的控制&#xff0c;进而实现电机的控制。本文将带领读者一步步了解如何搭建基于STM32与TB6612的电…

我从来不理解JavaScript闭包,但我用了它好多年

前言 &#x1f4eb; 大家好&#xff0c;我是南木元元&#xff0c;热衷分享有趣实用的文章&#xff0c;希望大家多多支持&#xff0c;一起进步&#xff01; &#x1f345; 个人主页&#xff1a;南木元元 你是否学习了很久JavaScript但还没有搞懂闭包呢&#xff1f;今天就来聊一下…

SpringBoot解决前后端分离跨域问题:状态码403拒绝访问

最近在写和同学一起做一个前后端分离的项目&#xff0c;今日开始对接口准备进行 登录注册 的时候发现前端在发起请求后&#xff0c;抓包发现后端返回了一个403的错误&#xff0c;解决了很久发现是【跨域问题】&#xff0c;第一次遇到&#xff0c;便作此记录✍ 异常描述 在后端…

Java---网络编程

文章目录 1. 网络编程概述2. InetAddress3. 端口和协议4. Java网络API5. URL6. URLConnection类 1. 网络编程概述 1. 计算机网络&#xff1a;是指将地理位置不同的具有独立功能的多台计算机及其外部设备&#xff0c;通过通信线路连接起来&#xff0c;在网络操作系统、网络管理软…

2024年Mac专用投屏工具AirServer 7 .27 for Mac中文版

AirServer 7 .27 for Mac中文免费激活版是一款Mac专用投屏工具&#xff0c;能够通过本地网络将音频、照片、视频以及支持AirPlay功能的第三方App&#xff0c;从 iOS 设备无线传送到 Mac 电脑的屏幕上&#xff0c;把Mac变成一个AirPlay终端的实用工具。 目前最新的AirServer 7.2…

Matlab技巧[绘画逻辑分析仪产生的数据]

绘画逻辑分析仪产生的数据 逻分上抓到了ADC数字信号,一共是10Bit,12MHZ的波形: 这里用并口协议已经解析出数据: 导出csv表格数据(这个数据为补码,所以要做数据转换): 现在要把这个数据绘制成波形,用Python和表格直接绘制速度太慢了,转了一圈发现MATLAB很好用,操作方法如下:…