基于EMD的滚动轴承故障诊断算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1EMD的基本原理

固有模态函数(IMF)

筛分过程

4.2 基于EMD的滚动轴承故障诊断算法

信号预处理

EMD分解

特征提取

故障诊断

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

.......................................................................
axes(handles.axes5) 
[x,t,ssf,yy,fxs]=plotspec2(IMF(1,:),1/fs);
plot(t,x)   
xlabel('Sample number');
ylabel(['imf(',num2str(1),')']); 
title(['imf(',num2str(1),')信号']);
xlim([0,t(end)]);axes(handles.axes7) 
plot(ssf,abs(fxs))         % plot magnitude spectrum
xlabel('频率'); 
ylabel('幅度')   % label the axes
title(['imf(',num2str(1),')频谱']);axes(handles.axes8) 
[yt,Vm]=func_baoluo(IMF(1,:),fs,1);
[maxv,maxl]=max(Vm);
hold on
plot(yt(maxl),maxv,'r*');
title(['imf(',num2str(1),')包络谱']);
xlim([0,500]);axes(handles.axes9) 
[x,t,ssf,yy,fxs]=plotspec2(IMF(2,:),1/fs);
plot(t,x)   
xlabel('Sample number');
ylabel(['imf(',num2str(2),')']); 
title(['imf(',num2str(2),')信号']);
xlim([0,t(end)]);axes(handles.axes10) 
plot(ssf,abs(fxs))         % plot magnitude spectrum
xlabel('频率'); 
ylabel('幅度')   % label the axes
title(['imf(',num2str(2),')频谱']);axes(handles.axes11) 
[yt,Vm]=func_baoluo(IMF(2,:),fs,1);
[maxv,maxl]=max(Vm);
hold on
plot(yt(maxl),maxv,'r*');
title(['imf(',num2str(2),')包络谱']);
xlim([0,500]);if LEVELview>=3
figure;
for i=1:LEVELview[x,t,ssf,yy,fxs]=plotspec2(IMF(i,:),1/fs);subplot(LEVEL,3,3*i-2);plot(t,x)   xlabel('Sample number');ylabel(['imf(',num2str(i),')']); title(['imf(',num2str(i),')信号']);xlim([0,t(end)]);subplot(LEVEL,3,3*i-1);plot(ssf,abs(fxs))         % plot magnitude spectrumxlabel('频率'); ylabel('幅度')   % label the axestitle(['imf(',num2str(i),')频谱']);subplot(LEVEL,3,3*i);[yt,Vm]=func_baoluo(IMF(i,:),fs,1);[maxv,maxl]=max(Vm);maxvhold onplot(yt(maxl),maxv,'r*');title(['imf(',num2str(i),')包络谱']);xlim([0,500]);end
end% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton4 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
clc;
clear;
close all;% --- Executes on button press in pushbutton5.
function pushbutton5_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton5 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
parameters;figure;
for i=1:LEVEL
y_cum = cumest(IMF(i,:)',4,512);subplot(LEVEL,2,2*i-1);plot(t,x)   xlabel('Sample number');ylabel(['imf(',num2str(i),')']); title(['imf(',num2str(i),')信号']);xlim([0,t(end)]);subplot(LEVEL,2,2*i);plot(y_cum)   title(['imf(',num2str(i),')高阶谱']);
end
17_013m

4.算法理论概述

        基于经验模态分解(Empirical Mode Decomposition,EMD)的滚动轴承故障诊断算法是一种有效的非平稳信号处理方法,特别适用于处理非线性、非平稳的振动信号。该方法通过自适应地将复杂信号分解为一系列固有模态函数(Intrinsic Mode Functions,IMFs),进而提取出信号的时频特征,为滚动轴承的故障诊断提供有力支持。

4.1EMD的基本原理

        EMD方法的核心思想是根据信号自身的局部时域特性,自适应地将其分解为一系列固有模态函数。每个IMF代表信号中不同频率尺度的振荡模式,且具有明确的物理意义。

固有模态函数(IMF)

固有模态函数是满足以下两个条件的函数:

  1. 在整个数据序列中,极值点(包括极大值点和极小值点)的数量与过零点的数量相等或最多相差一个。
  2. 在任意时刻,由局部极大值点定义的上包络线和由局部极小值点定义的下包络线的均值为零。

筛分过程

EMD通过以下步骤对信号进行筛分,得到一系列IMF:

4.2 基于EMD的滚动轴承故障诊断算法

信号预处理

        首先,对采集到的滚动轴承振动信号进行预处理,包括降噪、去趋势等,以减少噪声和其他干扰因素对故障诊断的影响。

EMD分解

        将预处理后的信号作为输入,应用EMD方法进行分解,得到一系列IMF。每个IMF代表信号中不同频率尺度的振荡模式,反映了滚动轴承不同故障特征的信息。

特征提取

        从分解得到的IMFs中提取出与滚动轴承故障相关的特征。常用的特征包括IMF的能量、均方根值、峰值、峭度等。这些特征能够有效地描述滚动轴承的状态和故障类型。

故障诊断

        利用提取的特征构建故障诊断模型实现对滚动轴承故障类型的自动识别和诊断。

        为了验证基于EMD的滚动轴承故障诊断算法的有效性,可以采用实验数据进行验证。首先,采集不同状态下(正常、不同故障类型)的滚动轴承振动信号;然后,应用EMD方法进行信号分解和特征提取;最后,利用提取的特征训练故障诊断模型,并对测试数据进行故障诊断。通过比较诊断结果与真实故障类型的符合程度,评估算法的性能和准确性。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/590729.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot 实现Execl 导入导出

1、引包 <dependency><groupId>cn.afterturn</groupId><artifactId>easypoi-base</artifactId><version>3.0.3</version></dependency><dependency><groupId>cn.afterturn</groupId><artifactId>easy…

A星寻路算法

A星寻路算法简介 A星寻路算法&#xff08;A* Search Algorithm&#xff09;是一种启发式搜索算法&#xff0c;它在图形平面上进行搜索&#xff0c;寻找从起始点到终点的最短路径。A星算法结合了广度优先搜索&#xff08;BFS&#xff09;和最佳优先搜索&#xff08;Best-First S…

MyBatis-注解的方式实现接口声明的方法

基本说明&#xff1a; 说明&#xff1a;我们可以将MonsterMapperjava接口方法在对应的MonsterlMapper.xml文件中实现外&#xff0c;也可以直接组织MonsterMappere.java接口中声明的方法&#xff0c;直接使用注解来实现&#xff0c;可以作为一种补充的机制在项目中使用.…

5-Docker实例-安装redis

1.拉取redis镜像 命令: docker search redis docker pull redis:3.2 [root@centos79 ~]# docker search redis NAME DESCRIPTION STARS OFFICIAL AUTOMATED redis …

【复现】FreeU以及结合stable diffusion

code&#xff1a;GitHub - ChenyangSi/FreeU: FreeU: Free Lunch in Diffusion U-Net 才发现AnimateDiff更新v3了&#xff0c;以及又发了篇CVPR的改进工作&#xff1a; 在这个版本中&#xff0c;我们通过域适配器LoRA对图像模型进行了微调&#xff0c;以便在推理时具有更大的灵…

如何使用 PyTorch 训练 LLM

一、引言 语言模型&#xff08;LLM&#xff09;是一种重要的自然语言处理&#xff08;NLP&#xff09;技术&#xff0c;它通过对大量文本数据进行训练&#xff0c;学习语言的内在结构和语义信息。PyTorch作为一种流行的深度学习框架&#xff0c;具有灵活性和易用性&#xff0c…

MySQL 高级(进阶) SQL 语句

目录 一、实验环境准备 二、MySQL高阶查询 1、语句与命令 2、实验实操 三、MySQL函数 1、语句与命令 2、实验操作 一、实验环境准备 #创建两个数据表&#xff0c;为实验提供环境&#xff1a; use kgc; #选择数据库&#xff0c;有则直接使用 无则按照以下步骤自建即可…

WPF+Halcon 培训项目实战(8-9):WPF+Halcon初次开发

文章目录 前言相关链接项目专栏运行环境匹配图片WPF Halcon组件HSmartWindowControlWPF绑定读取图片运行代码运行结果 抖动问题解决运行结果 绘制矩形绘制图像会消失 绘制对象绑定事件拖动事件 前言 为了更好地去学习WPFHalcon&#xff0c;我决定去报个班学一下。原因无非是想…

nginx安装和配置

目录 1.安装 2.配置 3.最小配置说明 4. nginx 默认访问路径 1.安装 使用 epel 源安装 先安装 yum 的扩展包 yum install epel-release -y 再安装 nginx yum install nginx -y 在启动nginx 前先关闭防火墙 systemctl stop firewalld 取消防火墙开机自启 systemctl di…

Self-attention学习笔记(Self Attention、multi-head self attention)

李宏毅机器学习Transformer Self Attention学习笔记记录一下几个方面的内容 1、Self Attention解决了什么问题2、Self Attention 的实现方法以及网络结构Multi-head Self Attentionpositional encoding 3、Self Attention 方法的应用4、Self Attention 与CNN以及RNN对比 1、Se…

基于grpc从零开始搭建一个准生产分布式应用(8) - 01 - 附:GRPC公共库源码

开始前必读&#xff1a;​​基于grpc从零开始搭建一个准生产分布式应用(0) - quickStart​​ common包中的源码&#xff0c;因后续要用所以一次性全建好了。 一、common工程完整结构 二、引入依赖包 <?xml version"1.0" encoding"UTF-8"?> <p…

【linux】cat的基本使用

cat是一个常用的命令&#xff0c;用来显示文本的内容&#xff0c;合并和创建文本文件 类似命令还有显示文件开头的内容&#xff1a; 【linux】head的用法 输出文件开头的内容-CSDN博客 显示文件末尾的内容&#xff1a; 【linux】tail的基本使用-CSDN博客 当我们想到了想要…

Zookeeper-Zookeeper选举源码

看源码方法&#xff1a; 1、先使用&#xff1a;先看官方文档快速掌握框架的基本使用 2、抓主线&#xff1a;找一个demo入手&#xff0c;顺藤摸瓜快速静态看一遍框架的主线源码&#xff0c;画出源码主流程图&#xff0c;切勿一开始就陷入源码的细枝末节&#xff0c;否则会把自…

Vue3 用户认证:如何检查用户是否已登录

&#x1f9d9;‍♂️ 诸位好&#xff0c;吾乃诸葛妙计&#xff0c;编程界之翘楚&#xff0c;代码之大师。算法如流水&#xff0c;逻辑如棋局。 &#x1f4dc; 吾之笔记&#xff0c;内含诸般技术之秘诀。吾欲以此笔记&#xff0c;传授编程之道&#xff0c;助汝解技术难题。 &…

Primavera Unifier 项目控制延伸:Phase Gate理论:3/3

继续上一篇阶段Gate的具体内容 https://campin.blog.csdn.net/article/details/127827681https://campin.blog.csdn.net/article/details/127827681 阶段 3 研发 前述阶段的计划和安排都要在研发阶段执行起来&#xff0c;同时&#xff0c;最重要的产品设计和开发部分也需要在…

系统学习Python——装饰器:函数装饰器-[对方法进行装饰:基础知识]

分类目录&#xff1a;《系统学习Python》总目录 我们在前面的文章中编写了第一个基于类的tracer函数装饰器的时候&#xff0c;我们简单地假设它也应该适用于任何方法一一一被装饰的方法应该同样地工作&#xff0c;并且自带的self实例参数应该直接包含在*args的前面。但这一假设…

7-2 换硬币

将一笔零钱换成5分、2分和1分的硬币&#xff0c;要求每种硬币至少有一枚&#xff0c;有几种不同的换法&#xff1f; 输入格式: 输入在一行中给出待换的零钱数额x∈(8,100)。 输出格式: 要求按5分、2分和1分硬币的数量依次从大到小的顺序&#xff0c;输出各种换法。每行输出…

计算机基础面试题 |04.精选计算机基础面试题

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

python打开文件的方式比较

open(addr,w) 打开之后文件无论以前有什么&#xff0c;打开后都要清空 /// open(addr,r) 文件打开后&#xff0c;不删除以前内容

Ubuntu连接xshell

安装ssh服务器 sudo apt-get install openssh-server​ 重启ssh sudo service ssh restart 3.启动ssh服务 /etc/init.d/ssh start4.修改文件&#xff0c;允许远程登陆 sudo vi /etc/ssh/sshd_config PermitRootLogin prohibit-password #默认为禁止登录 PermitRootLogin y…