基于蚁狮算法优化的Elman神经网络数据预测 - 附代码

基于蚁狮算法优化的Elman神经网络数据预测 - 附代码

文章目录

  • 基于蚁狮算法优化的Elman神经网络数据预测 - 附代码
    • 1.Elman 神经网络结构
    • 2.Elman 神经用络学习过程
    • 3.电力负荷预测概述
      • 3.1 模型建立
    • 4.基于蚁狮优化的Elman网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对Elman神经网络,初始权值阈值盲目随机性的缺点。采用蚁狮算法对ELman的阈值和权值进行优化。利用电力负荷预测模型进行测试,结果表明改进后的神经网络预测性能更佳。

1.Elman 神经网络结构

Elman 型神经网络一般分为四层:输入层、隐含层(中间层)、承接层和输出层 。 如图 1所示。输入层、隐含层、输出层的连接类似于前馈式网络 ,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数,承接层又称上 下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输入 , 可以认为是 一个一步延时算子。

Elman 神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输入。 这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力 ,从而达到动态建模的目的。此外, Elman 神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对 , 就可以对系统进行建模 。

在这里插入图片描述

图1.Elman网络结构

2.Elman 神经用络学习过程

以图1为例 , Elman 网络的非线性状态空间表达式为 :
y ( k ) = g ( w 3 x ( k ) ) (1) y(k) = g(w^3x(k)) \tag{1} y(k)=g(w3x(k))(1)

x ( k ) = f ( w 1 x c ( k ) + w 2 ( u ( k − 1 ) ) ) (2) x(k)=f(w^1x_c(k)+w^2(u(k-1)))\tag{2} x(k)=f(w1xc(k)+w2(u(k1)))(2)

x c ( k ) = x ( k − 1 ) (3) x_c(k)=x(k-1)\tag{3} xc(k)=x(k1)(3)

式中, y y y m m m 维输出结点向量 ; x x x n n n 维中间层结点单元向量; u u u r r r 维输入向量; x c x_c xc n n n 维反馈状态向量; w 3 w^3 w3 为中间层到输出层连接权值; w 2 w^2 w2为输入层到中间层连接权值; w 1 w^1 w1为承接层到中间层的连接权值; g ( ∗ ) g(*) g()为输出神经元的传递函数,是中间层输出的线性组合; f ( ∗ ) f(*) f()为中间层神经元的传递函数,常采用 S S S 函数 。

Elman 神经网络也采用 BP 算法进行权值修正,学习指标函数采用误差平方和函数。
E ( w ) = ∑ k = 1 n ( y k ( w ) − y k ′ ( w ) ) 2 (4) E(w)=\sum_{k=1}^n(y_k(w)-y'_k(w))^2\tag{4} E(w)=k=1n(yk(w)yk(w))2(4)

3.电力负荷预测概述

电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符 质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力,使整个系统保 持稳定且高效地运行,以满足用户的需求 。 否则,就会影响供用电的质量,甚至危及系统的安全 与稳定 。 因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小、速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习、自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济 的发展,电力系统的结胸日趋复杂,电力负荷变化的非线性、时变性和不确定性的特点更加明 显,很难建立一个合适的数学模型来清晰地表达负荷 和影响负荷的变量之间的 关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路 。

3.1 模型建立

利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中, 反馈式神经网络又因为其具有输入延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测 ,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。

一般来说,电力系统的负荷高峰通常出现在每天的 9~ 19 时之间 ,本案对每天上午的逐时负荷进行预测 ,即预测每天 9 ~ 11 时共 3 小时的负荷数据。电力系统负荷数据如下表所列,表中数据为真实数据,已经经过归 一化 。

时间负荷数据负荷数据负荷数据
2008.10.100.12910.48420.7976
2008.10.110.10840.45790.8187
2008.10.120.18280.79770.743
2008.10.130.1220.54680.8048
2008.10.140.1130.36360.814
2008.10.150.17190.60110.754
2008.10.160.12370.44250.8031
2008.10.170.17210.61520.7626
2008.10.180.14320.58450.7942

利用前 8 天的数据作为网络的训练样本,每 3 天的负荷作为输入向量,第 4 天的负荷作为目标向量。这样可以得到 5 组训练样本。第 9 天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据 。

4.基于蚁狮优化的Elman网络

蚁狮算法原理请参考:https://blog.csdn.net/u011835903/article/details/107726004

利用蚁狮算法对Elman网络的初始权值和阈值进行优化。适应度函数设计为测试集的绝对误差和:
f i t n e s s = ∑ i = 1 n ∣ p r e d i c t n − T r u e V a l u e n ∣ (5) fitness = \sum_{i=1}^n|predict_n - TrueValue_n| \tag{5} fitness=i=1npredictnTrueValuen(5)

5.测试结果

蚁狮参数设置如下:

%% 网络相关参数设定
hiddNum = 18;%隐含层个数
R = size(p_train,1);%输入数据每组的维度
Q = size(t_train,1);%输出数据的维度
threshold = [0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];%每组数据对应维度的最小(0)和最大值(1);%% 蚁狮相关参数设定
%% 定义蚁狮优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = hiddNum*R + hiddNum + Q + hiddNum*hiddNum + Q*hiddNum;%维度,即权值与阈值的个数,承接层个数
lb = -5.*ones(1,dim);%下边界
ub = 5.*ones(1,dim);%上边界
fobj = @(x) fun(x,hiddNum,R,Q,threshold,p_train,t_train,p_test,t_test);

在这里插入图片描述
在这里插入图片描述

从结果来看,3个时刻点,蚁狮-Elman均比原始结果Elman好,误差更小。

由于上述数据有限,大家可以用自己的数据进行测试。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/589912.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CMake入门教程【基础篇】CMake+Minggw构建项目

文章目录 Minggw是什么Minggw下载CMake下载安装第1步:下载CMake第2步:安装CMake 如何构建和编译项目:使用CMake和MinGW总结 Minggw是什么 MinGW(Minimalist GNU for Windows)是一个免费的软件开发环境,旨在…

基于简化版python+VGG+MiniGoogLeNet的智能43类交通标志识别—深度学习算法应用(含全部python工程源码)+数据集+模型(二)

目录 前言总体设计系统整体结构图系统流程图 运行环境模块实现1. 数据预处理2. 模型构建1)VGG模型简化版2)GoogLeNet简化版——MiniGoogLeNet 3. 模型训练及保存 相关其它博客工程源代码下载其它资料下载 前言 本项目专注于解决出国自驾游特定场景下的交…

C#中string.ToUpper()和string.ToLower()的用法

目录 一、关于ToUpper()和ToLower() 1.ToUpper() 2.ToLower() 3.小结 二、实例 三、生成效果 一、关于ToUpper()和ToLower() 1.ToUpper() 使用字符串对象的ToUpper方法可以将字符串中的字母全部转换为大写。 string P_str_book "mingribook".ToUpper()…

AD教程 (二十一)模块化布局规划

AD教程 (二十一)模块化布局规划 原理图是按照我们的功能模块去进行排布划分的 利用交叉选择模式分屏快速进行模块化布局 分屏,选中任意文档,右击,点击垂直分割 交叉选择模式,点击工具,交叉选…

【Java进阶篇】JDK新版本中的新特性都有哪些

JDK新版本中的新特性都有哪些 ✔️经典解析✔️拓展知识仓✔️本地变量类型推断✔️Switch 表达式✔️Text Blocks✔️Records✔️封装类✔️instanceof 模式匹配✔️switch 模式匹配 ✅✔️虚拟线程 ✔️经典解析 JDK 8中推出了Lambda表达式、Stream、Optional、新的日期API等…

2023-12-12LeetCode每日一题(下一个更大元素 IV)

2023-12-12每日一题 一、题目编号 2454. 下一个更大元素 IV二、题目链接 点击跳转到题目位置 三、题目描述 给你一个下标从 0 开始的非负整数数组 nums 。对于 nums 中每一个整数,你必须找到对应元素的 第二大 整数。 如果 nums[j] 满足以下条件,那…

「网络编程」其他重要的协议或技术_ DNS协议 | ICMP协议 | NAT技术

「前言」文章内容是DNS协议、ICMP协议、NAT技术的讲解。 「归属专栏」网络编程 「主页链接」个人主页 「笔者」枫叶先生(fy) 目录 一、DNS协议1.1 背景1.2 域名简介1.3 域名解析的过程 二、ICMP协议2.1 ICMP简介2.2 ping命令2.3 traceroute命令 三、NAT技术3.1 NAT技术背景3.2 …

【算法提升—力扣每日一刷】五日总结【12/25--12/29】

文章目录 LeetCode每五日一总结【12/25--12/29】2023/12/25今日数据结构:双锁实现阻塞队列 2023/12/26每日力扣:[215. 数组中的第K个最大元素(堆实现)](https://leetcode.cn/problems/kth-largest-element-in-an-array/) 2023/12/…

uniapp中的uview组件库丰富的Form 表单用法

目录 基本使用 #Form-item组件说明 #验证规则 #验证规则属性 #uView自带验证规则 #综合实战 #校验错误提示方式 #校验 基本使用 此组件一般是用于表单验证使用,每一个表单域由一个u-form-item组成,表单域中可以放置u-input、u-checkbox、u-radio…

伺服电机:原点复位

一、原点复位概念 原点复位指的是,在驱动器使能时,触发原点复位功能后,电机将主动查找零点,完成定位功能。 那么问题来了,什么是原点,什么是零点? 原点:即机械原点,可…

基于JAVA的独居老人物资配送系统 开源项目

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示四、核心代码4.1 查询社区4.2 新增物资4.3 查询物资4.4 查询物资配送4.5 新增物资配送 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的独居老人物资配送系统,包含了社区档案、…

【解决问题】pyinstaller打包python应用进行快速分发

pyinstaller打包python应用进行快速分发 问题起因先利其器再善其事试用运行 问题起因 有同学问我要接口的应用,于是试了一下python打包成exe的过程。 先利其器 主要使用pyinstaller,可以通过pip安装 pip install pyinstaller安装过程如图 再善其事…

B+树的插入删除

操作 插入 case2的原理,非叶子节点永远和最右边的最左边的节点的值相等。 case3:的基本原理 非叶子节点都是索引节点 底层的数据分裂之后 相当于向上方插入一个新的索引(你可以认为非叶子节点都是索引),反正第二层插入160 都要分裂,然后也需要再插入(因为索引部分不需要重…

2023-12-27 LeetCode每日一题(保龄球游戏的获胜者)

2023-12-27每日一题 一、题目编号 2660. 保龄球游戏的获胜者二、题目链接 点击跳转到题目位置 三、题目描述 给你两个下标从 0 开始的整数数组 player1 和 player2 ,分别表示玩家 1 和玩家 2 击中的瓶数。 保龄球比赛由 n 轮组成,每轮的瓶数恰好为…

数据分析工具 Top 8

你能想象一个没有工具箱的水管工吗? 没有,对吧? 数据从业者也是如此。如果没有他们的数据分析工具,数据从业者就无法分析数据、可视化数据、从数据中提取价值,也无法做数据从业者在日常工作中做的许多很酷的事情。 根据你最感兴趣的数据科学职业——数…

前后台分离开发

前后台分离开发 简介 前后台分离开发,就是在项目开发过程中,对于前端代码的开发由专门的前端开发人员负责,后端代码则由后端开发人员负责,这样可以做到分工明确、各司其职,提高开发效率,前后端代码并行开…

SpringBoot 日志打印

一. 自定义打印日志 开发者自定义打印日志实现步骤: • 在程序中得到日志对象 • 使用日志对象的相关语法输出要打印的内容. 得到日志对象: //日志工厂需要将需要打印的类的类型传递进去,这样我们才知道日志的归属类,才能更方便的定位到文体类 private static Logger logger …

js_常用事件演示

✨前言✨ 1.如果代码对您有帮助 欢迎点赞👍收藏⭐哟 后面如有问题可以私信评论哟🗒️ 2.博主后面将持续更新哟😘🎉文章目录 🍔一、在JavaScript中什么是事件?🍟二、为什么要使用事件&#x…

杂文月刊投稿方式论文发表要求

《杂文月刊》是由国家新闻出版总署批准的正规文学类期刊。主要内容取向:杂文、散文、小说、诗歌、漫画、文学评论、艺术评论、戏剧文化、地方文化、非遗文化、美学艺术、教育等历史、文化、文学、艺术类的文章。是广大专家、学者、教师、学子发表论文、交流信息的重…

gzip引入后node_modules中.cache compression-webpack-plugin占用内存过多

1.Gzip Gzip(GNU zip)是一种常见的文件压缩格式和压缩算法,通常用于在 Web 服务器上对静态资源文件进行压缩,以减小文件大小并加快文件传输速度。在前端开发中,经常会使用 Gzip 压缩来优化网站的性能。 Gzip 压缩通过…