【卷积神经网络】MNIST 手写体识别

LeNet-5 是经典卷积神经网络之一,1998 年由 Yann LeCun 等人在论文 《Gradient-Based Learning Applied to Document Recognition》中提出。LeNet-5 网络使用了卷积层、池化层和全连接层,实现可以应用于手写体识别的卷积神经网络。TensorFlow 内置了 MNIST 手写体数据集,可以很方便地读取数据集,并应用于后续的模型训练过程中。本文主要记录了如何使用 TensorFlow 2.0 实现 MNIST 手写体识别模型。

目录

1 数据集准备

2 模型建立

3 模型训练


1 数据集准备

        TensorFlow 内置了 MNIST 手写体数据集,安装 TensorFlow 之后,使用如下代码就可以加载 MNIST 数据集:

import tensorflow as tfmnist = tf.keras.datasets.mnist
(train_x, train_y), (test_x, test_y) = mnist.load_data()

        使用 Matplotlib 查看前 25 张图片,并打印对应的标签。

from matplotlib import pyplot as plt# 查看训练集
plt.figure(figsize=(3,3))
for i in range(25):plt.subplot(5,5,i+1)plt.imshow(train_x[i], cmap=plt.cm.binary)plt.xticks([])plt.yticks([])
plt.show()

        接着,使用 tf.one_hot() 函数,对图像的标签进行独热码编码。

# 预处理
train_y = tf.one_hot(train_y, depth=10)
test_y = tf.one_hot(test_y, depth=10)

2 模型建立

        MNIST 手写体数据集中,每张图像的大小是 28 × 28 × 1,按照 LeNet-5 模型的思路,构建卷积神经网络模型。选择 5 × 5 的卷积核,卷积层之后是 2 × 2 的平均池化,激活函数选择 sigmoid(除了最后一层)。

# the first layer can receive an 'input_shape' argument
model = tf.keras.models.Sequential([tf.keras.layers.Conv2D(filters=6,kernel_size=5,padding='valid',activation='sigmoid',input_shape=(28,28,1)),tf.keras.layers.AveragePooling2D(pool_size=(2,2),strides=2,padding='valid'),tf.keras.layers.Conv2D(filters=16,kernel_size=5,padding='valid',activation='sigmoid'),tf.keras.layers.AveragePooling2D(pool_size=(2,2),strides=2,padding='valid'),tf.keras.layers.Flatten(),tf.keras.layers.Dense(120,activation='sigmoid'),tf.keras.layers.Dense(84,activation='sigmoid'),tf.keras.layers.Dense(10,activation='softmax')
])

        使用 model.summary() 查看模型信息。

model.summary()

Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 conv2d (Conv2D)             (None, 24, 24, 6)         156       
                                                                 
 average_pooling2d (AverageP  (None, 12, 12, 6)        0         
 ooling2D)                                                       
                                                                 
 conv2d_1 (Conv2D)           (None, 8, 8, 16)          2416      
                                                                 
 average_pooling2d_1 (Averag  (None, 4, 4, 16)         0         
 ePooling2D)                                                     
                                                                 
 flatten (Flatten)           (None, 256)               0         
                                                                 
 dense (Dense)               (None, 120)               30840     
                                                                 
 dense_1 (Dense)             (None, 84)                10164     
                                                                 
 dense_2 (Dense)             (None, 10)                850       
                                                                 
=================================================================
Total params: 44,426
Trainable params: 44,426
Non-trainable params: 0
_________________________________________________________________

3 模型训练

        使用 compile() 函数配置模型,优化算法为 Adam 算法,学习率为 0.001,损失函数为交叉熵损失函数。

# 模型配置
model.compile(optimizer=tf.keras.optimizer.Adam(learning_rate=1e-3),loss=tf.keras.losses.CategoricalCrossentropy(),metrics=['accuracy']
)# 模型训练
model.fit(x=train_x,y=train_y,validation_split=0.0,epochs=10
)

Epoch 1/10
1875/1875 [==============================] - 72s 38ms/step - loss: 0.5806 - accuracy: 0.8206
Epoch 2/10
1875/1875 [==============================] - 70s 37ms/step - loss: 0.1254 - accuracy: 0.9620
Epoch 3/10
1875/1875 [==============================] - 75s 40ms/step - loss: 0.0870 - accuracy: 0.9735
Epoch 4/10
1875/1875 [==============================] - 82s 43ms/step - loss: 0.0699 - accuracy: 0.9785
Epoch 5/10
1875/1875 [==============================] - 69s 37ms/step - loss: 0.0604 - accuracy: 0.9809
Epoch 6/10
1875/1875 [==============================] - 68s 36ms/step - loss: 0.0530 - accuracy: 0.9833
Epoch 7/10
1875/1875 [==============================] - 72s 38ms/step - loss: 0.0477 - accuracy: 0.9854
Epoch 8/10
1875/1875 [==============================] - 70s 38ms/step - loss: 0.0436 - accuracy: 0.9863
Epoch 9/10
1875/1875 [==============================] - 70s 37ms/step - loss: 0.0399 - accuracy: 0.9873
Epoch 10/10
1875/1875 [==============================] - 68s 36ms/step - loss: 0.0357 - accuracy: 0.9883
<keras.callbacks.History at 0x20a56b65660>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/58966.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023年智慧政务一网通办云平台顶层设计与建设方案PPT

导读:原文《2023年智慧政务一网通办云平台顶层设计与建设方案PPT》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。 部分内容:

汽车3D HMI图形引擎选型指南【2023】

推荐&#xff1a;用 NSDT编辑器 快速搭建可编程3D场景 2002年&#xff0c;电影《少数派报告》让观众深入了解未来。 除了情节的核心道德困境之外&#xff0c;大多数人都对它的技术着迷。 我们看到了自动驾驶汽车、个性化广告和用户可以无缝交互的 3D 计算机界面。 令人惊讶的是…

基于PID优化和矢量控制装置的四旋翼无人机(MatlabSimulink实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

使用GoLand进行远程调试

对部署进行配置 在此配置远程服务器地址&#xff0c;映射&#xff0c;是否自动上传(更新)等 选择SFTP类型 选择上传 另外给自动上传选项打钩 此时在本地修改某个文件&#xff0c;远程机器相应目录的文件&#xff0c;也会被同步修改 对远程调试进行配置 远程机器需要安装delve 而…

时间范围选择时选中日期所使用的当日内具体时刻 如00:00:00= 23:59:59

<el-form-item label"审核时间&#xff1a;"><el-date-pickerv-model"auditTime"type"datetimerange"range-separator"至"value-format"yyyy-MM-dd HH:mm:ss"start-placeholder"开始日期"end-placeholde…

无意间发现这款可以免费制作3D翻页电子画册的网站

在博主努力的搜寻下&#xff0c;无意间发现这个网站&#xff0c;可以免费制作3D翻页电子画册。使用这个网站非常简单&#xff0c;只需上传你想要展示的图片和添加相应的文字&#xff0c;然后选择合适的模板和风格。接下来&#xff0c;就会自动转化成漂亮的3D翻页画册 工具嘛&am…

用idea查看sqlite数据库idea sqlite

1、安装Database Navigator插件 2、导入数据库并查看 3、删除数据库连接 在此做个笔记

ceph中PGLog处理流程

ceph的PGLog是由PG来维护&#xff0c;记录了该PG的所有操作&#xff0c;其作用类似于数据库里的undo log。PGLog通常只保存近千条的操作记录(默认是3000条&#xff0c; 由osd_min_pg_log_entries指定)&#xff0c;但是当PG处于降级状态时&#xff0c;就会保存更多的日志&#x…

地铁+铁路系统防雷接地应用解决方案

地铁作为城市轨道交通的一种&#xff0c;是一种高效、安全、环保的公共交通方式。然而&#xff0c;地铁也面临着雷电灾害的威胁&#xff0c;尤其是在雷暴多发的地区。 雷电对地铁系统的影响主要有以下几个方面&#xff1a; 直接雷击&#xff1a;雷电直接击中地铁系统的设备或…

RISC-V公测平台发布 · 在SG2042上配置Jupiter+Octave科学计算环境

简介 JupyterHub是一个开源的共享计算平台&#xff0c;它为每个用户管理一个单独的 Jupyter 环境&#xff0c; 可以用于学生班级、企业数据科学小组或科学研究小组。它是一个多用户中心&#xff0c;可以生成、管理和代理多个单用户Jupyter笔记本服务器的实例。 GNU Octave是一…

WebSocket- 前端篇

官网代码 // 为了浏览器兼容websocketconst WebSocket window.WebSocket || window.MozWebSocket// 创建连接 this.socket new WebSocket(ws://xxx)// 连接成功this.socket.onopen (res)>{console.log(websocket 连接成功)this.socket.send(入参字段) // 传递的参数字段}…

【前端】 Layui点击图片实现放大、关闭效果

实现效果&#xff1a;点击图片实现放大&#xff0c;点击空白处关闭效果。下图。 实现逻辑&#xff1a;二维码是使用JQ插件生成的&#xff0c;点击二维码&#xff0c;获取图片路径&#xff0c;通过Layui的弹窗显示放大后的图片。 Html <div id"qrcode" class&quo…

Java学习笔记31——字符流

字符流 字符流为什么出现字符流编码表字符串中的编码解码问题字符流写数据的5中方式字符流读数据的两种方式字符流复制Java文件 字符流 为什么出现字符流 汉字的存储如果是GBK编码占用2个字节&#xff0c;如果是UTF-8占用三个字节 用字节流复制文本文件时&#xff0c;文本文…

驱动开发错误汇编

本博文将会不定期更新。以便记录我的驱动开发生涯中的一些点点滴滴的技术细节和琐事。 生成时link找不到导出函数&#xff0c;比如"LNK2019 无法解析的外部符号 _FltCreateCommunicationPort32"。出现这种情况的原因是&#xff0c;驱动的编译环境忽略了所有的默认库&…

基于实例的学习方法

基于实例的学习方法 动机基本概念基于实例的学习基于实例的概念表示 1. 最近邻最近邻的例子理论结果最近邻&#xff08;1- NN&#xff09;:解释问题 K-近邻(KNN)KNN讨论1 &#xff1a;距离度量KNN 讨论2&#xff1a;属性KNN:属性归一化KNN:属性加权 KNN讨论3:连续取值目标函数K…

C# 使用NPOI操作EXCEL

1.添加NOPI 引用->管理NuGet程序包->添加NOPI 2.相关程序集 3.添加命名空间 using NPOI.HSSF; using NPOI.XSSF; using System.IO; using NPOI.XSSF.UserModel; using NPOI.HSSF.UserModel; 4.从Excel导入的dgv样例 //NPOI读入dgv private void button1_Click(object s…

Python切换输入法的实战代码

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

经纬恒润荣获吉利汽车“最佳价值贡献”奖

8月18日&#xff0c;以“全面向新 共创共赢”为主题&#xff0c;吉利汽车在宁波成功举行2023年电子电器核心供应商恳谈会。经纬恒润凭借在项目合作上持续创新、高效协同等优异表现&#xff0c;获得“最佳价值贡献”奖项。 作为国产汽车代表性品牌之一&#xff0c;吉利汽车积极推…

多通道振弦数据记录仪在岩土工程隧洞中的完整解决方案

多通道振弦数据记录仪在岩土工程隧洞中的完整解决方案 隧洞工程是一种非常复杂的工程类型&#xff0c;需要高度的安全性和精确性。而在岩土工程中&#xff0c;振弦是一种非常常用的测试方法&#xff0c;用于测定岩土体的物理性质以及地震波传播特性等&#xff0c;以利于对隧洞…

【深入浅出设计模式--状态模式】

深入浅出设计模式--状态模式 一、背景二、问题三、解决方案四、 适用场景总结五、后记 一、背景 状态模式是一种行为设计模式&#xff0c;让你能在一个对象的内部状态变化时改变其行为&#xff0c;使其看上去就像改变了自身所属的类一样。其与有限状态机的概念紧密相关&#x…