文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《兼顾捕碳强度与可再生能源消纳的储能容量配置优化方法》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主的专栏栏目《论文与完整程序》

这个标题涉及到两个主要方面:捕碳强度和可再生能源的消纳,以及与之相关的储能容量配置的优化方法。下面我会逐一解读这两个方面:

  1. 捕碳强度与可再生能源消纳:

    • 捕碳强度: 这指的是在能源生产或使用过程中,对二氧化碳(CO2)等温室气体的排放程度。在这个上下文中,标题可能在讨论如何最大程度地减少或捕捉碳排放,以实现更为环保和可持续的能源系统。
    • 可再生能源消纳: 意味着整合和有效利用可再生能源,如太阳能、风能等。这可能与电力系统中大量的可再生能源集成有关,以及如何在系统中平衡和消纳这些可再生能源的波动。
  2. 储能容量配置优化方法:

    • 储能容量配置: 指的是在能源系统中引入储能设备,以平衡能源供需、处理波动和提高系统的稳定性。储能设备可以是电池、储水池、压缩空气储能等。
    • 优化方法: 指的是采用一种系统性的方法,通过算法、模型或策略来确定最佳的储能容量配置。这可能需要考虑多个因素,包括能源需求模式、可再生能源的波动性、碳排放目标等。

综合起来,这个标题表明关注点在于如何在能源系统中找到一种储能容量配置的优化方法,以在捕碳强度和可再生能源消纳方面取得平衡。这可能涉及到开发智能化的算法,以在系统中动态调整储能容量,确保在不同条件下都能够最大程度地提高系统的效能,同时降低碳排放。这类问题往往需要深入的系统分析、数学建模和计算优化技术。

摘要:碳捕集技术是实现发电行业碳达峰和碳中和目标的重要手段。传统碳捕集机组在灵活运行方式下参与可再生能源消纳时,将丧失一定的捕碳强度,无法在深度脱碳条件下灵活地进行可再生能源消纳。为此,面向碳捕集电厂和可再生能源电源,该文提出一种新型捕碳储能系统,主储能系统用于可再生能源消纳,次储能系统协助碳捕集机组实现电碳解耦,并分析瞬态与动态电碳解耦特性。在该捕碳储能系统架构下,基于KL散度刻画风电和光伏出力的不确定性,并构建储能容量配置的分布鲁棒优化模型。最后,通过算例分析进行仿真验证,结果证明了储能容量配置模型的有效性,验证了所提捕碳储能系统可提高可再生能源消纳水平的同时保证高捕碳强度。

这段摘要涉及碳捕集技术在发电行业碳达峰和碳中和目标中的关键作用,以及传统碳捕集机组在参与可再生能源消纳时所面临的挑战。以下是摘要的逐步解读:

  1. 碳捕集技术的重要性:

    • 摘要首先指出碳捕集技术是实现发电行业碳达峰和碳中和目标的关键手段。这表明在减少温室气体排放和实现碳中和的过程中,碳捕集技术被认为是一项不可或缺的工具。
  2. 传统碳捕集机组的挑战:

    • 在灵活运行方式下参与可再生能源消纳时,传统碳捕集机组存在一个问题,即可能会失去一定的捕碳强度。这意味着在可再生能源消纳的过程中,传统碳捕集机组可能无法保持其最大的碳捕集效率,尤其是在追求深度脱碳的条件下。
  3. 新型捕碳储能系统的提出:

    • 为解决传统碳捕集机组的灵活性问题,文中提出了一种新型捕碳储能系统。该系统包括主储能系统和次储能系统,分别用于可再生能源消纳和协助碳捕集机组实现电碳解耦。电碳解耦意味着在能源生产中,电的产生不再与碳排放直接挂钩。
  4. 瞬态与动态电碳解耦特性的分析:

    • 文中对该捕碳储能系统的瞬态与动态电碳解耦特性进行了分析,强调了在不同时间尺度下实现电碳解耦的重要性。
  5. 不确定性建模与优化:

    • 通过使用KL散度刻画风电和光伏出力的不确定性,文中构建了储能容量配置的分布鲁棒优化模型。这表明考虑到可再生能源的波动性,系统在不确定条件下仍然能够有效运行。
  6. 仿真验证与结论:

    • 最后,通过算例分析进行仿真验证,结果证明了储能容量配置模型的有效性。同时,验证了所提出的捕碳储能系统在提高可再生能源消纳水平的同时,能够保证高捕碳强度。

总体而言,该文提出的新型捕碳储能系统及其相应的建模和优化方法似乎是在解决传统碳捕集机组在可再生能源消纳中的灵活性问题上取得了一定的进展。

关键词: 储能容量配置;捕碳强度;可再生能源消纳;碳捕集厂;电碳解耦;

  1. 储能容量配置:

    • 指的是确定并分配储能系统的存储容量,以满足系统对能量的需求。在这里,可能涉及到对储能系统的设计和优化,确保其能够在需要时提供足够的能量,特别是在可再生能源波动性较大的情况下。
  2. 捕碳强度:

    • 是指碳捕集过程中单位能量产生的碳排放量。高捕碳强度表示在能量生产中捕获了更多的碳,是减少温室气体排放的关键指标。在这里,可能涉及到提高捕碳技术的效率或改进捕碳工艺。
  3. 可再生能源消纳:

    • 意味着将可再生能源(比如风能、太阳能等)整合到能源系统中,使其能够有效地被利用。这可能包括解决可再生能源的间歇性和不稳定性,确保在需要时能够可靠地使用这些能源。
  4. 碳捕集厂:

    • 是指专门从排放源中捕获二氧化碳等温室气体的设施。这些厂房通常用于降低工业过程或能源生产过程中的碳排放,以达到减缓气候变化的目标。
  5. 电碳解耦:

    • 意味着将电的生产与碳排放分离。通常,这是通过使用低碳或零碳的能源来源,比如可再生能源,来产生电能。电碳解耦是追求清洁能源和减少碳排放的一项战略,有助于实现碳中和目标。在这里,可能与碳捕集技术结合使用,以进一步减少电能生产的碳排放。

这些关键词似乎在一个综合的能源系统或碳捕集系统的上下文中被使用,目标可能是实现高效、灵活的可再生能源消纳,同时维持高捕碳强度和推动电碳解耦。

仿真算例:

本文采用改进 IEEE-30 节点系统进行算例验 证,在节点 5、21 引入 80 和 100MW 的风电场。 G1 和 G5 改造为碳捕集电厂。在节点 8 引入 55MW 光伏电站。可再生能源发电数据来源于中国西北某 区域风电、光伏实测数据。风电和光伏全年时序数 据见附图 B1,采用拉丁超立方抽样得到 4 种典型 日(春、夏、秋、冬),典型日天数 91 天。负荷数据 见附图 B2,忽略负荷出力不确定性。常规火电机 组具体参数见附表 C1;碳捕集电厂和储能相关参 数见附表 C2。其余相关参数见附表 C3。分流、储 液和综合灵活运行方式涉及的贫/富液存储器体积 等参数详见文献[22]。 为验证所提储能容量配置模型的有效性,将所 提分布鲁棒优化 (distributionally robust optimization,DRO)模型与确定性优化(certainty optimization , CO) 型、随机优化 (stochastic optimization , SO) 模 型 [23] 、鲁棒优化 (robust optimization,RO)模型[24]进行对比。 为进一步验证本文所提捕碳储能系统的可行 性,本文设置了如下 5 个碳捕集场景进行对比: 1)碳捕集厂 G1、G5 工作在常规运行方式下, 仅在风电场和光伏站配置主储能系统; 2)碳捕集厂 G1、G5 工作在分流运行方式下,仅在风电场和光伏站配置主储能系统; 3)碳捕集厂 G1、G5 工作在储液运行方式下, 仅在风电场和光伏站配置主储能系统; 4)碳捕集厂 G1、G5 工作在综合灵活运行方 式下,仅在风电场和光伏站配置主储能系统; 5)碳捕集厂 G1、G5 工作在电碳解耦运行方 式下,在风电场和光伏站配置主储能系统,在 G1、 G5 配置次储能系统以提升机组灵活性。

仿真程序复现思路:

复现该仿真需要进行以下步骤:

  1. 建立系统模型:

    • 使用 IEEE-30 节点系统作为基础,引入风电场和光伏电站,并将节点 5、21 分别连接 80MW 和 100MW 的风电场,节点 8 连接 55MW 的光伏电站。
    • 根据给出的数据(附图 B1,附图 B2,附表 C1,附表 C2,附表 C3)整合风电和光伏的全年时序数据,以及负荷数据。
  2. 设计算法:

    • 实现拉丁超立方抽样,从全年时序数据中抽取代表春、夏、秋、冬四种典型日的数据,每种典型日持续 91 天。
    • 建立储能容量配置模型,涉及的优化算法包括分布鲁棒优化 (DRO) 模型、确定性优化 (CO) 模型、随机优化 (SO) 模型以及鲁棒优化 (RO) 模型。这些模型将被用于验证储能容量配置模型的有效性。
  3. 验证碳捕集场景:

    • 设置五种不同的碳捕集场景,包括不同的运行方式以及储能系统配置。
    • 分别对每个场景下的节点 G1 和 G5 进行仿真,记录碳捕集厂在不同运行方式下的效果。
  4. 程序语言示例(伪代码):

    • 以下是一种可能的伪代码表示,展示如何组织程序来进行仿真:
import numpy as np
import matplotlib.pyplot as plt# Step 1: 建立系统模型
class PowerSystem:def __init__(self):# 初始化节点和组件self.nodes = {}self.wind_farms = {}self.solar_farms = {}self.energy_storage = Nonedef add_node(self, node_id):self.nodes[node_id] = Node(node_id)def add_wind_farm(self, node_id, capacity):if node_id not in self.wind_farms:self.wind_farms[node_id] = WindFarm(node_id, capacity)def add_solar_farm(self, node_id, capacity):if node_id not in self.solar_farms:self.solar_farms[node_id] = SolarFarm(node_id, capacity)def add_energy_storage(self, capacity):self.energy_storage = EnergyStorage(capacity)# 节点类
class Node:def __init__(self, node_id):self.node_id = node_id# 风电场类
class WindFarm:def __init__(self, node_id, capacity):self.node_id = node_idself.capacity = capacity# 光伏电场类
class SolarFarm:def __init__(self, node_id, capacity):self.node_id = node_idself.capacity = capacity# 储能系统类
class EnergyStorage:def __init__(self, capacity):self.capacity = capacityself.state_of_charge = 0# Step 2: 设计算法和建立储能容量配置模型
# 省略对 DRO、CO、SO 和 RO 模型的具体实现# Step 3: 验证碳捕集场景
def simulate_scenario(system, scenario):# 根据场景配置节点和组件# 进行仿真计算# 场景 1:常规运行方式
scenario_1 = {'G1': 'conventional', 'G5': 'conventional', 'storage': 'main'}
simulate_scenario(power_system, scenario_1)# 场景 2:分流运行方式
scenario_2 = {'G1': 'diverted', 'G5': 'diverted', 'storage': 'main'}
simulate_scenario(power_system, scenario_2)# 场景 3:储液运行方式
scenario_3 = {'G1': 'liquid', 'G5': 'liquid', 'storage': 'main'}
simulate_scenario(power_system, scenario_3)# 场景 4:综合灵活运行方式
scenario_4 = {'G1': 'flexible', 'G5': 'flexible', 'storage': 'main'}
simulate_scenario(power_system, scenario_4)# 场景 5:电碳解耦运行方式
scenario_5 = {'G1': 'decoupled', 'G5': 'decoupled', 'storage': 'main', 'secondary_storage': 'secondary'}
simulate_scenario(power_system, scenario_5)

请注意,这个示例并没有具体的仿真计算或优化算法的实现,而是提供了一个基本的框架,你需要根据具体的问题和仿真工具来完善和扩展这个框架。此外,你可能需要使用诸如Matpower、Pandapower等专业工具来建模和仿真电力系统

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/588913.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【快速全面掌握 WAMPServer】10.HTTP2.0时代,让 WampServer 开启 SSL 吧!

网管小贾 / sysadm.cc 如今的互联网就是个看脸的时代,颜值似乎成了一切! 不信?看看那些直播带货的就知道了,颜值与出货量绝对成正比! 而相对于 HTTP 来说,HTTPS 绝对算得上是高颜值的帅哥,即安…

深入理解Mysql事务隔离级别与锁机制

1. 概述 我们的数据库一般都会并发执行多个事务,多个事务可能会并发的对相同的一批数据进行增删改查操作,可能就会导致我们说的脏写、脏读、不可重复读、幻读这些问题。 这些问题的本质都是数据库的多事务并发问题,为了解决多事务并发问题&am…

Decorator装饰模式(单一责任)

Decorator(装饰模式:单一责任模式) 链接:装饰模式实例代码 解析 目的 在某些情况下我们可能会“过度地使用继承来扩展对象的功能”,由于继承为类型引入的静态特质,使得这种扩展方式缺乏灵活性&#xff…

[react]react-router-dom 与 redux 版本升级

[react]react-router-dom 与 redux 版本升级 环境脚手架的升级react-router-dom 升级关于路由相关文件的写法--react-router-dom 5.0.1入口渲染文件App.js路由框架src/views/root/index.js路由守卫 src/views/routerguide/index.jsx路由文件src/views/page.js 关于路由相关文件…

Linuxwebserver项目

1.主函数mian signal(SIGPIPE,SIG_IGN); char pwd_path[256]"";记录工作目录 char * path getenv("PWD");获取当前目录工作路径 ///home/itheima/share/bjc34/07day/web-http strcpy(pwd_path,path);字符串复制函数 strcat(pwd_path…

《数据结构、算法与应用C++语言描述》- 平衡搜索树 -全网唯一完整详细实现插入和删除操作的模板类

平衡搜索树 完整可编译运行代码见:Github::Data-Structures-Algorithms-and-Applications/_34Balanced search tree 概述 本章会讲AVL、红-黑树、分裂树、B-树。 平衡搜索树的应用? AVL 和红-黑树和分裂树适合内部存储的应用。 B-树适合外部存储的…

[Ray Tracing: The Rest of Your Life] 笔记

前言 开年第一篇博客~ 整理了三四个小时才整理完orz。 这一部分是光线追踪三部曲的最后一部,主要介绍了蒙特卡洛积分、重要性采样等内容。场景上没有什么大的改变,基本上就是在Cornell Box中渲染的,本篇主要在加速收敛,提升渲染效…

LeetCode 2735. 收集巧克力【枚举】2043

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…

【快速全面掌握 WAMPServer】09.如何在 WAMPServer 中安装 Composer

网管小贾 / sysadm.cc WAMPServer 的大名想必应该有不少人特别是新手小白们略有耳闻吧。 它是出自法国大神之手的一款 PHP 开发环境集成包,工作于 Windows 环境,类似于它这样的集成包在 Linux 平台上反正我是没找到,所以它应该算是对使用 Wi…

CollectionUtils

使用 CollectionUtils 类的常用方法 在Java开发中,我们经常需要对集合进行各种操作,而Apache Commons Collections库提供了一个方便的工具类 CollectionUtils,其中包含了许多实用的方法。在这篇博客中,我们将深入了解一些常用的方…

MIT线性代数笔记-第35讲-期末复习

目录 35.期末复习打赏 35.期末复习 已知一个矩阵 A A A满足 A x ⃗ [ 1 0 0 ] A \vec{x} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} Ax ​100​ ​无解且 A x ⃗ [ 0 1 0 ] A \vec{x} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} Ax ​010​ ​仅有一个解 (1)求 A A A的…

call的一点奇怪的使用

Object.prototype.hasOwnProperty.call(initModal, method) 解释: 在这个特定的代码中,它用于检查 initModal 对象是否具有名为 method 的属性。 Object.prototype.hasOwnProperty 是一个内置的 JavaScript 方法,它可以检查一个对象是否具有…

linux安装rabbitmq

文章目录 前言一、下载安装包二、erlang1.安装依赖2.解压3.安装4.环境变量5.验证 三、rabbitmq1.安装依赖2.解压3.新建目录4.rabbitmq.env.conf5.rabbitmq.conf6.环境变量7.启动8.验证9.停止 四、安装web1.安装插件2.访问控制台界面 五、开机启动1.编写脚本2.设置开机启动3.测试…

硬件安全模块 (HSM)、硬件安全引擎 (HSE) 和安全硬件扩展 (SHE)的区别

术语 硬件安全模块 (HSM) :Hardware Security Modules硬件安全引擎 (HSE) :Hardware Security Engines安全硬件扩展 (SHE) : Secure Hardware Extensions 介绍 在汽车行业中,硬件安全模块 (HSM)、硬件安全引擎 (HSE) 和安全硬件…

Android长按图标展示快捷方式

if (Build.VERSION.SDK_INT > Build.VERSION_CODES.O) {new Thread(() -> {// 获取ShortcutManager实例ShortcutManager shortcutManager getSystemService(ShortcutManager.class);// 创建要添加的快捷方式ShortcutInfo.Builder shortcutBuilder new ShortcutInfo.Bui…

Java中如何实现负载均衡策略

1. 引言 当在Java应用程序中需要处理负载均衡时,通常涉及到多个服务器或服务实例,以确保请求能够分散到这些实例上,从而提高系统性能、可用性和可伸缩性。实现负载均衡策略可以通过多种方法,包括基于权重、轮询、随机选择、最少连…

[蓝桥杯2020国赛]答疑

答疑 题目描述 有 n 位同学同时找老师答疑。每位同学都预先估计了自己答疑的时间。 老师可以安排答疑的顺序,同学们要依次进入老师办公室答疑。 一位同学答疑的过程如下: 首先进入办公室,编号为 i 的同学需要 si​ 毫秒的时间。然后同学问…

大语言模型训练数据集

大语言模型的数据集有很多,以下是一些常用的: - 中文维基百科:这是一个包含大量中文文本的数据集,可用于训练中文语言模型。 - 英文维基百科:这是一个包含大量英文文本的数据集,可用于训练英文语言模型。 …

python脚本实现一次提取多个文件下的图片

problem formulation 有时候下载的数据集如下,就很烦,一个里面就一张图片 code import os import shutil# 定义源目录和目标目录 source_dir ./dataset/data/Detection destination_dir ./dataset/data/img# 确保目标目录存在,如果不存…

css原子化的框架Tailwindcss的使用教程(原始html和vue项目的安装与配置)

安装教程 中文官网教程 原始的HTML里面使用 新建文件夹npm init -y 初始化项目 安装相关依赖 npm install -D tailwindcss postcss-cli autoprefixer初始化两个文件 npx tailwindcss init -p根目录下新建src/style.css tailwind base; tailwind components; tailwind ut…