Spark中的数据加载与保存

Apache Spark是一个强大的分布式计算框架,用于处理大规模数据。在Spark中,数据加载与保存是数据处理流程的关键步骤之一。本文将深入探讨Spark中数据加载与保存的基本概念和常见操作,包括加载不同数据源、保存数据到不同格式以及性能优化等方面的内容。

数据加载

在开始使用Spark进行数据分析和处理之前,首先需要加载数据。Spark支持多种数据源,可以根据您的需求选择合适的数据加载方法。以下是一些常见的数据加载方式以及示例代码:

1 从文本文件加载数据

加载文本文件是最常见的数据加载方式之一。可以使用textFile方法来加载文本文件,并将其转换为RDD(弹性分布式数据集)。

from pyspark import SparkContext# 创建SparkContext
sc = SparkContext("local", "DataLoadingExample")# 从文本文件加载数据
text_data = sc.textFile("data.txt")# 显示数据
text_data.take(5)

2 从CSV文件加载数据

如果数据以CSV格式存储,可以使用第三方库(如pandas)来加载CSV文件,然后将其转换为RDD或DataFrame。

import pandas as pd
from pyspark.sql import SparkSession# 创建SparkSession
spark = SparkSession.builder.appName("DataLoadingExample").getOrCreate()# 使用pandas加载CSV文件
csv_data = pd.read_csv("data.csv")# 将pandas DataFrame转换为Spark DataFrame
spark_df = spark.createDataFrame(csv_data)# 显示数据
spark_df.show()

3 从数据库加载数据

Spark支持从关系型数据库中加载数据,可以使用JDBC连接来加载数据。首先,需要提供数据库连接信息,并使用read方法加载数据。

# 配置数据库连接信息
jdbc_url = "jdbc:mysql://localhost:3306/mydb"
connection_properties = {"user": "username","password": "password","driver": "com.mysql.jdbc.Driver"
}# 从数据库加载数据
db_data = spark.read.jdbc(url=jdbc_url, table="mytable", properties=connection_properties)# 显示数据
db_data.show()

4 从Hive表加载数据

如果在Hive中存储了数据,可以直接在Spark中加载Hive表的数据。

# 从Hive表加载数据
hive_data = spark.sql("SELECT * FROM my_table")# 显示数据
hive_data.show()

数据保存

在对数据进行处理和分析后,通常需要将结果保存回不同的数据源或文件中。Spark支持多种数据保存方式,以下是一些常见的数据保存方式以及示例代码:

1 保存数据到文本文件

将数据保存到文本文件是一种常见的方式,可以使用saveAsTextFile方法将RDD的内容保存为文本文件。

# 保存数据到文本文件
text_data.saveAsTextFile("output.txt")

2 保存数据到CSV文件

如果希望将数据保存为CSV格式,可以使用DataFrame的toPandas方法将数据转换为pandas DataFrame,然后再保存为CSV文件。

# 转换为pandas DataFrame
pandas_df = spark_df.toPandas()# 保存为CSV文件
pandas_df.to_csv("output.csv", index=False)

3 保存数据到数据库

将数据保存到数据库也是一种常见的操作,可以使用write方法将数据写入数据库。

# 配置数据库连接信息
jdbc_url = "jdbc:mysql://localhost:3306/mydb"
connection_properties = {"user": "username","password": "password","driver": "com.mysql.jdbc.Driver"
}# 保存数据到数据库
db_data.write.jdbc(url=jdbc_url, table="mytable", mode="overwrite", properties=connection_properties)

4 保存数据到Parquet文件

Parquet是一种列式存储格式,适合于大规模数据的存储和分析。您可以使用Parquet格式来保存数据。

# 保存数据到Parquet文件
spark_df.write.parquet("output.parquet")

性能优化和注意事项

在加载和保存数据时,性能优化是一个重要的考虑因素。以下是一些性能优化和注意事项:

1 数据分区

在保存数据时,合理分区数据可以提高写入性能。您可以使用repartition方法来重新分区数据。

# 重新分区数据
data.repartition(4).write.parquet("output.parquet")

2 数据压缩

在保存数据时,考虑使用数据压缩可以减少存储空间和网络传输开销。可以在保存数据时指定压缩算法。

# 使用Snappy压缩算法保存数据
spark_df.write.parquet("output.parquet", compression="snappy")

3 数据合并

如果需要追加数据到已有的文件中,可以使用mode参数设置为append

# 追加数据到已有文件中
data.write.mode("append").parquet("existing_data.parquet")

总结

Spark中的数据加载与保存是数据处理流程的重要步骤。本文深入探讨了数据加载与保存的基本概念、常见操作以及性能优化和注意事项。

希望本文能够帮助大家更好地理解和使用Spark中的数据加载与保存功能,并在数据处理和分析任务中取得更好的性能和效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/588709.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

20231231_小米音箱接入GPT

参考资料: GitHub - yihong0618/xiaogpt: Play ChatGPT and other LLM with Xiaomi AI Speaker *.设置运行脚本权限 Set-ExecutionPolicy -ExecutionPolicy RemoteSigned *.配置小米音箱 ()pip install miservice_fork -i https://pypi.tuna.tsinghua.edu.cn/sim…

算法逆袭之路(1)

11.29 开始跟进算法题进度! 每天刷4题左右 ,一周之内一定要是统一类型 而且一定稍作总结, 了解他们的内在思路究竟是怎样的!! 12.24 一定要每天早中晚都要复习一下 早中午每段一两道, 而且一定要是同一个类型, 不然刷起来都没有意义 12.26/27: 斐波那契数 爬…

B3610 [图论与代数结构 801] 无向图的块 题解

B3610 [图论与代数结构 801] 无向图的块 题解 2023 2023 2023,再见。 2024 2024 2024,你好! 解法 其实就是统计点双连通分量的个数。需要注意的是,孤立点在这里不被看作块。本文使用 tarjan 算法来解决这道题。 概念明晰 时间…

机器学习:贝叶斯估计在新闻分类任务中的应用

文章摘要 随着互联网的普及和发展,大量的新闻信息涌入我们的生活。然而,这些新闻信息的质量参差不齐,有些甚至包含虚假或误导性的内容。因此,对新闻进行有效的分类和筛选,以便用户能够快速获取真实、有价值的信息&…

【完整思路】2023 年中国高校大数据挑战赛 赛题 B DNA 存储中的序列聚类与比对

2023 年中国高校大数据挑战赛 赛题 B DNA 存储中的序列聚类与比对 任务 1.错误率和拷贝数分析:分析“train_reads.txt”和“train_reference.txt”数据集中的错误率(插入、删除、替换、链断裂)和序列拷贝数。 2.聚类模型开发:开发…

Unity坦克大战开发全流程——结束场景——失败界面

结束场景——失败界面 在玩家类中重写死亡函数 在beginPanel中锁定鼠标

Redis 分布式锁总结

在一个分布式系统中,由于涉及到多个实例同时对同一个资源加锁的问题,像传统的synchronized、ReentrantLock等单进程情况加锁的api就不再适用,需要使用分布式锁来保证多服务实例之间加锁的安全性。常见的分布式锁的实现方式有zookeeper和redis等。而由于redis分布式锁相对于比…

搭建普罗米修斯Prometheus,并监控MySQL

1.简介 prometheus是一种时间序列的数据库,适合应用于监控以及告警,但是不适合100%的准确计费,因为采集的数据不一定很准确,主要是作为监控以及收集内存、CPU、硬盘的数据。 Prometheus生态系统由多个组件组成,其中许…

积水监测识别摄像机

积水监测识别摄像机是一种利用摄像技术来监测和识别道路、桥梁、隧道等区域积水情况的设备,它可以有效地提供实时的积水监测信息,帮助交通部门和相关单位及时采取应对措施,确保道路交通的畅通和人员安全。 积水监测识别摄像机通过安装在适当位…

STM32F407ZGT6定时器(学习笔记二)

STM32F407ZGT6定时器(学习笔记一)-CSDN博客这篇文章中已经对前三种定时器的使用进行了介绍,本篇文章将介绍(1)输入捕获之计算方波时长,(2)输入捕获之编码器模式。 高级定时器和通用定…

【深入之Java进阶篇】fastjson的反序列化漏洞(详解总结)

✔️ fastjson的反序列化漏 1️⃣典型解析2️⃣拓展知识仓1️⃣AutoType2️⃣AutoType 有何错?3️⃣ 绕过checkAutotype,黑客与fastjson的博弈4️⃣autoType不开启也能被攻击?5️⃣利用异常进行攻击6️⃣AutoType 安全模式? 1️⃣典型解析 当我们使用fastjson进行…

mllib可扩展学习库java api使用

mllib可扩展学习库java api是使用Apache Spark构建的机器学习库,包括分类,聚类,特征提取和预处理等功能。本文将从以下几个方面详细介绍如何使用mllib可扩展学习库java api。 一、数据预处理 数据预处理是机器学习的重要步骤之一&#xff0…

2023.12.28 Python高级-正则表达式

目录 re正则表达式,一种专门用来匹配目标字符串的规则 re.match(),从头匹配一个,无则none re.search(), 不从头匹配返回一个,无则none re.findall(), 不从头匹配,用list返回所有 re分组 re匹配修饰符 re贪婪非贪婪 re切割和替换 re正则表达式,一种专门用来匹配目标字符串…

linux的页缓存page cache

目录 如何查看系统的 Page Cache? 为什么 Linux 不把 Page Cache 称为 block cache? Page Cache 的优劣势 Page Cache 的优势 加快数据访问 减少 IO 次数,提高系统磁盘 I/O 吞吐量 Page Cache 的劣势 由于我们开发的程序要运行的话一般…

redis—List列表

目录 前言 1.常见命令 2.使用场景 前言 列表类型是用来存储多个有序的字符串,如图2-19所示,a、b、C、d、e五个元素从左到右组成 了一个有序的列表,列表中的每个字符串称为元素(element) ,一个列表最多可以存储2^32 - 1 个元素…

功能开发 -- 向埃隆·马斯克学习任务分解

文章目录 马斯克的任务分解软件开发的任务分解可执行的最小单位任务小结 马斯克的任务分解 我们都知道埃隆马斯克(Elon Musk),他既是电动汽车公司特斯拉(Tesla)的创始人,同时还创建了太空探索公司 SpaceX。…

李宏毅 自然语言处理(Voice Conversion) 笔记

前一章笔记:李宏毅 自然语言处理(Speech Recognition) 笔记 引入 什么是voice conversion? 输入一段声音,输出另一段声音,我们希望这两端声音:内容一样,其他方面不一样&#xff08…

[设计模式 Go实现] 创建型~建造者模式

建造者模式(Builder Pattern)使用多个简单的对象一步一步构建成一个复杂的对象。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。 一个 Builder 类会一步一步构造最终的对象。该 Builder 类是独立于其他对象的。 代码实…

每日一题——LeetCode977

方法一 个人方法&#xff1a; 以示例1为例&#xff1a;把[-4,-1,0,3,10] 中n<0的元素拆分出来&#xff0c;把他们的平方从小到大放入arr数组&#xff0c;则arr[0,1,16] ,那数组就还剩[3,10] 对于剩下的元素&#xff0c;看arr里面有没有比他们平方更小的元素先放入res数组&…

vue3-12

需求是用户如果登录了&#xff0c;可以访问主页&#xff0c;如果没有登录&#xff0c;则不能访问主页&#xff0c;随后跳转到登录界面&#xff0c;让用户登录 实现思路&#xff0c;在用户登录之前做一个检查&#xff0c;如果登录了&#xff0c;则token是存在的&#xff0c;则放…