mllib可扩展学习库java api使用

mllib可扩展学习库java api是使用Apache Spark构建的机器学习库,包括分类,聚类,特征提取和预处理等功能。本文将从以下几个方面详细介绍如何使用mllib可扩展学习库java api。

一、数据预处理

数据预处理是机器学习的重要步骤之一,可以提高模型的准确性和鲁棒性。mllib可扩展学习库java api提供了一系列的数据处理工具,包括数据清洗,缺失值填充,特征缩放和编码等。

下面是一个使用mllib可扩展学习库java api进行数据预处理的示例:

import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils// 加载训练数据
val data = MLUtils.loadLibSVMFile(spark.sparkContext, "data/mllib/sample_libsvm_data.txt")// 数据划分为训练集和测试集
val Array(training, test) = data.randomSplit(Array(0.6, 0.4))// 特征提取: 将文本转化为词向量
val tokenizer = new Tokenizer().setInputCol("text").setOutputCol("words")
val hashingTF = new HashingTF().setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(1000)
val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")// 将文本数据转化为LabeledPoint格式
val labeledTrainingData = training.map { case LabeledPoint(label, text) =>val words = tokenizer.transform(text)val rawFeatures = hashingTF.transform(words)val features = idf.fit(rawFeatures).transform(rawFeatures).asInstanceOf[Vector]LabeledPoint(label, features)
}val labeledTestData = test.map { case LabeledPoint(label, text) =>val words = tokenizer.transform(text)val rawFeatures = hashingTF.transform(words)val features = idf.fit(rawFeatures).transform(rawFeatures).asInstanceOf[Vector]LabeledPoint(label, features)
}

二、分类算法

mllib可扩展学习库java api提供了一系列的分类算法,包括逻辑回归,支持向量机,决策树等。下面以逻辑回归为例,给出分类算法的代码示例:

import org.apache.spark.ml.classification.LogisticRegression// 训练逻辑回归模型
val lr = new LogisticRegression().setMaxIter(10).setRegParam(0.01)
val lrModel = lr.fit(labeledTrainingData)// 在测试集上进行预测
val predictions = lrModel.transform(labeledTestData)// 计算分类结果精度
val accuracy = predictions.filter(r => r(0) == r(1)).count().toDouble / labeledTestData.count()

三、聚类算法

mllib可扩展学习库java api提供了一系列的聚类算法,包括K-Means和层次聚类等。下面以K-Means为例,给出聚类算法的代码示例:

import org.apache.spark.ml.clustering.KMeans// 训练K-Means模型
val kmeans = new KMeans().setK(3).setSeed(1L)
val model = kmeans.fit(labeledTrainingData.map(_.features))// 在测试集上进行预测
val predictions = model.transform(labeledTestData.map(_.features))// 打印聚类结果
predictions.foreach { case Prediction(label, features, prediction) =>println(s"$features are predicted to belong to cluster $prediction.")
}

四、模型评估

模型评估是机器学习的关键步骤之一,可以帮助我们了解模型的优劣。mllib可扩展学习库java api提供了一系列的模型评估工具,包括分类准确性,回归误差等。

下面是一个使用mllib可扩展学习库java api进行模型评估的示例:

import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics// 计算二元分类结果精度
val metrics = new BinaryClassificationMetrics(predictions.map(r => (r.getDouble(1), r.getDouble(2))))
println(s"Area under ROC = ${metrics.areaUnderROC}")

五、模型保存和加载

在使用机器学习模型的过程中,我们可能需要对模型进行保存和加载。mllib可扩展学习库java api提供了方便的接口,支持将模型保存为本地文件或者HDFS文件,并且在需要的时候进行加载。

下面是一个使用mllib可扩展学习库java api进行模型保存和加载的示例:

// 将模型保存为本地文件
lrModel.save("path/to/local/file")// 将模型保存到HDFS文件
lrModel.save(sc, "hdfs://path/to/hdfs/file")// 从本地文件加载模型
val localModel = LogisticRegressionModel.load("path/to/local/file")// 从HDFS文件加载模型
val hdfsModel = LogisticRegressionModel.load(sc, "hdfs://path/to/hdfs/file")

六、总结

本文详细介绍了mllib可扩展学习库java api的使用方法,覆盖了数据预处理,分类算法,聚类算法,模型评估,模型保存和加载等方面。通过本文的讲解,希望读者能够掌握mllib可扩展学习库java api的使用方法,自己能够独立构建机器学习模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/588697.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023.12.28 Python高级-正则表达式

目录 re正则表达式,一种专门用来匹配目标字符串的规则 re.match(),从头匹配一个,无则none re.search(), 不从头匹配返回一个,无则none re.findall(), 不从头匹配,用list返回所有 re分组 re匹配修饰符 re贪婪非贪婪 re切割和替换 re正则表达式,一种专门用来匹配目标字符串…

linux的页缓存page cache

目录 如何查看系统的 Page Cache? 为什么 Linux 不把 Page Cache 称为 block cache? Page Cache 的优劣势 Page Cache 的优势 加快数据访问 减少 IO 次数,提高系统磁盘 I/O 吞吐量 Page Cache 的劣势 由于我们开发的程序要运行的话一般…

redis—List列表

目录 前言 1.常见命令 2.使用场景 前言 列表类型是用来存储多个有序的字符串,如图2-19所示,a、b、C、d、e五个元素从左到右组成 了一个有序的列表,列表中的每个字符串称为元素(element) ,一个列表最多可以存储2^32 - 1 个元素…

功能开发 -- 向埃隆·马斯克学习任务分解

文章目录 马斯克的任务分解软件开发的任务分解可执行的最小单位任务小结 马斯克的任务分解 我们都知道埃隆马斯克(Elon Musk),他既是电动汽车公司特斯拉(Tesla)的创始人,同时还创建了太空探索公司 SpaceX。…

李宏毅 自然语言处理(Voice Conversion) 笔记

前一章笔记:李宏毅 自然语言处理(Speech Recognition) 笔记 引入 什么是voice conversion? 输入一段声音,输出另一段声音,我们希望这两端声音:内容一样,其他方面不一样&#xff08…

[设计模式 Go实现] 创建型~建造者模式

建造者模式(Builder Pattern)使用多个简单的对象一步一步构建成一个复杂的对象。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。 一个 Builder 类会一步一步构造最终的对象。该 Builder 类是独立于其他对象的。 代码实…

每日一题——LeetCode977

方法一 个人方法&#xff1a; 以示例1为例&#xff1a;把[-4,-1,0,3,10] 中n<0的元素拆分出来&#xff0c;把他们的平方从小到大放入arr数组&#xff0c;则arr[0,1,16] ,那数组就还剩[3,10] 对于剩下的元素&#xff0c;看arr里面有没有比他们平方更小的元素先放入res数组&…

vue3-12

需求是用户如果登录了&#xff0c;可以访问主页&#xff0c;如果没有登录&#xff0c;则不能访问主页&#xff0c;随后跳转到登录界面&#xff0c;让用户登录 实现思路&#xff0c;在用户登录之前做一个检查&#xff0c;如果登录了&#xff0c;则token是存在的&#xff0c;则放…

回顾2023,我的编程学习之旅

文章目录 前言我与C语言初识C语言简易扫雷游戏二进制的美妙神奇的指针强大的结构体灵活的动态内存管理总结 我与竞赛我与CSDN结语 前言 6月8号高考结束了&#xff0c;虽然还没有出分&#xff0c;但是也大致规划好自己想学什么专业了&#xff0c;没错就是计算机&#xff0c;出分…

RedisTemplate自增时保证原子性的lua脚本限制接口请求频率

场景&#xff1a;限制请求后端接口的频率&#xff0c;例如1秒钟只能请求次数不能超过10次&#xff0c;通常的写法是&#xff1a; 1.先去从redis里面拿到当前请求次数 2.判断当前次数是否大于或等于限制次数 3.当前请求次数小于限制次数时进行自增 这三步在请求不是很密集的时…

yarn run dev运行ant design pro项目报错-‘max‘ 不是内部或外部命令

运行ant design pro项目报错&#xff1a; >>yarn run dev yarn run v1.22.19 $ npm run start:dev > ant-design-pro6.0.0-beta.1 start:dev > cross-env REACT_APP_ENVdev MOCKnone UMI_ENVdev max dev max 不是内部或外部命令&#xff0c;也不是可运行的程序 …

PyTorch中常用的工具(4)Visdom

文章目录 前言3.2 Visdom 前言 在训练神经网络的过程中需要用到很多的工具&#xff0c;最重要的是数据处理、可视化和GPU加速。本章主要介绍PyTorch在这些方面常用的工具模块&#xff0c;合理使用这些工具可以极大地提高编程效率。 由于内容较多&#xff0c;本文分成了五篇文…

影视后期: PR调色处理,调色工具面板介绍

写在前面 整理一些影视后期的相关笔记博文为 Pr 调色处理&#xff0c;涉及调色工具面板简单认知包括 lumetri 颜色和范围面板理解不足小伙伴帮忙指正 元旦快乐哦 _ 名词解释 饱和度 是指色彩的鲜艳程度&#xff0c;也被称为色彩的纯度。具体来说&#xff0c;它表示色相中灰色…

从马尔可夫奖励过程到马尔可夫决策到强化学习【01/2】

一、说明 关于马尔可夫过程&#xff0c;如何将马尔可夫决策转化成决策依据&#xff0c;这里介绍的基本的思想路径&#xff0c;为读者将来设计和应用决策模型提供理论上的参考。 这是了解强化学习的一系列基础文章的后续文章。如果您有兴趣了解强化学习&#xff0c;请查看此处。…

运维系列Nginx:设置黑/白名单IP限制

黑/白名单IP限制访问配置 第一种&#xff1a;deny和allow指令属于ngx_http_access_module&#xff0c;nginx默认加载此模块&#xff0c;所以可直接使用。这种方式&#xff0c;最简单&#xff0c;最直接。设置类似防火墙iptable&#xff0c;使用方法&#xff1a; # 白名单设置&a…

【数值分析】choleskey分解,matlab实现

平方根分解&#xff08;Choleskey分解&#xff09; A G G T , A 对称正定 AGG^ \mathrm T \,\,,\,\, A对称正定 AGGT,A对称正定 A L D M L D L T ( L D 1 / 2 ) ( L D 1 / 2 ) T G G T \begin{align*} A LDM LDL^ \mathrm T(LD^{1/2})(LD^{1/2})^ \mathrm TGG^ \mathrm T…

huggingface的tokenizer解读

文章目录 前言一、huggingface的tokenizer含义1、含义2、整体概括 二、加载lmsys/vicuna-7b-v1.5模型的tokenizer三、调用tokernizer方法四、字符串的tokens应用1、tokenizer应用2、tokenizer进行token分词(tokenizer.tokenize)3、tokens转模型识别ids(tokenizer.convert_token…

STM32F407-14.3.10-表73具有有断路功能的互补通道OCx和OCxN的输出控制位-00x10

如上表所示&#xff0c;MOE0&#xff0c;OSSI0&#xff0c;CCxE1&#xff0c;CCxNE0时&#xff0c;OCx与OCxN的输出状态取决于GPIO端口上下拉状态。 ---------------------------------------------------------------------------------------------------------------------…

Python 中的运算符介绍(1)

算数运算符 常见的% 、//、/ 用法 赋值运算符 赋值运算&#xff1a;将等号右边赋值给等号左边 常见场景&#xff1a; 比较运算符 代码解析&#xff1a; 逻辑运算符 位运算符&#xff08;了解&#xff09; 三目运算符 身份证运算符 成员运算符

考研后SpringBoot复习2—容器底层相关注解

考研后SpringBoot复习2 SpringBoot底层注解学习 与容器功能相关的注解与springboot的底层原理密切相关 组件添加注解configuration Spring Ioc容器部分回顾 包括在配置中注册&#xff0c;开启包扫描和注解驱动开发等需要在进行重新的学习回顾 实例 package com.dzu.boot;imp…