最优轨迹生成(三)—— 无约束BIVP轨迹优化

   本系列文章是学习深蓝学院-移动机器人运动规划课程第五章最优轨迹生成 过程中所记录的笔记,本系列文章共包含四篇文章,依次介绍了微分平坦特性、无约束BVP轨迹优化、无约束BIVP轨迹优、 带约束轨迹优化等内容

   本系列文章链接如下:

   最优轨迹生成(一)—— 微分平坦

   最优轨迹生成(二)—— 无约束BVP轨迹优化

   最优轨迹生成(三)—— 无约束BIVP轨迹优化

   最优轨迹生成(四)—— 带约束轨迹优化


   三、无约束BIVP轨迹优化

在这里插入图片描述

   如果用BVP方法来对如下所示的折线路径进行平滑时,需要对每段折线解一个BVP,且需要指定每段折线起始和终末状态,如果指定的状态中的速度过大会不可行,所以BVP的一个缺陷是需要找到合适的指定状态,那么我们能不能仅对状态中的位置进行指定,让其他状态量,比如速度、加速度等自己去进行优化呢?

   也就是,对于下面的路径,我们仅给定起始和终末状态(位置、速度、加速度、jerk等)以及中间经过状态点的位置(不对速度、加速度、jerk等其他状态量进行指定),即要求平滑后的路径要经过这些指定的位置点,但这些这些位置点处的速度、加速度、jerk等状态量通过算法优化自行得到,这样也会使得轨迹更加顺滑,这就是边界中间值问题(BIVP)。

在这里插入图片描述

在这里插入图片描述

   BIVP的解具有超出输入或所优化阶数的连续性,比如当s=3时,状态为位置、速度、加速度、输入为jerk,则优化的目标函数为 min ⁡ z ( t ) ∫ t 0 t M [ p ( 3 ) ] 2 d t , \min_{z(t)}\int_{t_0}^{t_{M}}[p^{\left(3\right)}]^2\mathrm{d}t, minz(t)t0tM[p(3)]2dt,,即最小化jerk,最优性条件表明最优解是5次多项式,BIVP的解可以进一步保证snap是连续的。当s=4时,是最小化snap,但BIVP的解可以进一步保证Pop是连续的。


   下图给出了s=3时的例子,状态p、v、a是连续的,最小化的目标量jerk也是连续的、更高阶的snap是分段的,但其在中间状态点处(黄色的小球处)也是连续的

在这里插入图片描述


   所以,我们可以直接去施加这些轨迹上的连续性条件,得到一个关于多项式系数的等式Mc=b,只需要求一个M的逆就可以得到我们所需要的多项式的系数c,不需要去做优化,也不用去求 min ⁡ z ( t ) ∫ t 0 t M v ( t ) T W v ( t ) d t , \min_{z(t)}\int_{t_0}^{t_M}v(t)^{\mathrm{T}}\mathbf{W}v(t)\mathrm{d}t, minz(t)t0tMv(t)TWv(t)dt,这样一个问题

   那么如何构建出上述的Mc=b关系式呢?

   首先我们知道最优解一定是2s-1的多项式构成的样条,我们可以把每段多项式都先写出来,当s=3时,下式中N=2s-1=5

   f ( t ) = { f 1 ( t ) = ˙ ∑ i = 0 N p 1 , i t i T 0 ≤ t ≤ T 1 f 2 ( t ) = ˙ ∑ i = 0 N p 2 , i t i T 1 ≤ t ≤ T 2 ⋮ ⋮ f M ( t ) = ˙ ∑ i = 0 N p M , i t i T M − 1 ≤ t ≤ T M f(t)=\begin{cases}f_1(t)\dot{=}\sum_{i=0}^Np_{1,i}t^i&\quad T_0\le t\le T_1\\f_2(t)\dot{=}\sum_{i=0}^Np_{2,i}t^i&\quad T_1\le t\le T_2\\\vdots&\quad\vdots\\f_M(t)\dot{=}\sum_{i=0}^Np_{M,i}t^i&\quad T_{M-1}\le t\le T_M&\end{cases} f(t)= f1(t)=˙i=0Np1,itif2(t)=˙i=0Np2,itifM(t)=˙i=0NpM,itiT0tT1T1tT2TM1tTM

   接下来将给定的信息,以约束的形式写出来,比如将给定的起始状态和终末状态,分别写成第一段和最后一段的等式约束,如下所示:

   { f j ( k ) ( T j − 1 ) = x 0 , j ( k ) f j ( k ) ( T j ) = x T , j ( k ) \left\{\begin{matrix}{f_{j}^{(k)}(T_{j-1})}&{=x_{0,j}^{(k)}}\\{f_{j}^{(k)}(T_{j})}&{=x_{T,j}^{(k)}}\\\end{matrix}\right. {fj(k)(Tj1)fj(k)(Tj)=x0,j(k)=xT,j(k)

   中间状态点的位置信息也是给定的,也可以由等式约束的形式写出,此外,由前面的介绍可知相邻两段多项式要经过相同的状态点(位置、速度、加速度、jerk、snap均连续,也就是5个等式)

   f j ( k ) ( T j ) = f j + 1 ( k ) ( T j ) f_{j}^{(k)}(T_{j})=f_{j+1}^{(k)}(T_{j}) fj(k)(Tj)=fj+1(k)(Tj)

   通过这些条件就可以得到Mc=b关系式

在这里插入图片描述


   我们还需要为每段多项式轨迹分配时间,有两种不同的时间轴给定方法,第一种方法是每段多项式轨迹都独立计时,每段多项式轨迹的起点时间记为0,末端时间记为 T i T_i Ti,如下面的第一幅坐标轴所示。另一种方法是记录距离第一段轨迹开始处的时间差,从第一段轨迹的开始处计时为0,每段多项式轨迹的末端时间记为 T i T_i Ti,如下面的第二幅坐标轴所示。

   从数值稳定性上来看,上面的第一种方法更好一些

在这里插入图片描述


   通过上面的介绍,我们可以把BIVP问题,根据最优条件,即给定状态信息,写出每一段多项式系数的方程组Mc=b,其中M矩阵是带状的稀疏矩阵,可以调用稀疏求解器,比如带状的PLU器,来把每段多项式系数构成的矩阵c在线性时间内求解出来,从而得到每段多项式的表达式。

在这里插入图片描述


   那么这些中间的位置点如何确定呢?

   我们可以使用RRT*等全局规划算法来找到一条全局路径,在这个路径上取一些关键的点,来作为中间位置点,再使用上面介绍的方法生成轨迹。关键点的提取可以采用Douglas-Peukcer等算法。

在这里插入图片描述

   道格拉斯普克算法(Douglas-Peukcer)算法是一种简化线状要素的经典算法。其基本思想是对每一条曲线的首末点虚连一条直线,求所有点与直线的距离,并找出最大距离值dmax,用dmax与限差D相比。若dmax<D,这条曲线上的中间点全部舍去;若dmax ≥D,保留dmax对应的坐标点,并以该点为界,把曲线分为两部分,对这两部分重复使用该方法。

   算法的详细步骤如下:

   (1) 在曲线首尾两点间虚连一条直线,求出其余各点到该直线的距离,如下图1。

   (2) 选其最大者与阈值相比较,若大于阈值,则离该直线距离最大的点保留,否则将直线两端点间各点全部舍去,如下图2,第4点保留。

   (3) 依据所保留的点,将已知曲线分成两部分处理,重复第1、2步操作,迭代操作,即仍选距离最大者与阈值比较,依次取舍,直到无点可舍去,最后得到满足给定精度限差的曲线点坐标,如图3、图4依次保留第6点、第7点,舍去其他点,即完成线的化简。

在这里插入图片描述

   DP算法的实例程序

void BuildTree(DPNode *&root, vector<pcl::PointXYZ> points, pcl::PointXYZ headpoint, pcl::PointXYZ endpoint, double thres_ds)
{arrayoperation ArrExample;//创建一个新的根节点root = new DPNode;root->points = points;root->HeadPoint = headpoint;root->EndPoint = endpoint;if (points.size() <= 2)//点数少于2个的,不再进行划分{root->Left_node = NULL;root->Right_node = NULL;root->NodeType = false;//不能再划分}else{vector<double> disvec;//计算每个点到首尾两点构成直线的距离for (int i = 0; i < points.size(); i++){double tempds = Point2Dline(points[i], headpoint, endpoint);disvec.push_back(tempds);}double maxds = ArrExample.getMax_vector(disvec);double maxindex = ArrExample.GetIndexOfMax(disvec);//若整个点数为10个,那么maxindex一定是介于 2到9之间,因为不可能取首尾两个点,首尾点到直线的距离为0if (maxds < thres_ds)//小于阈值的,不再分割{root->Left_node = NULL;root->Right_node = NULL;root->NodeType = false;//不能再划分}else{root->NodeType = true;//可以继续划分//将点划分成2部分,左边与右边vector<pcl::PointXYZ> Leftpointsvec, Rightpointsvec;for (int i = 0; i < points.size(); i++){if (i <= maxindex){Leftpointsvec.push_back(points[i]);//左边树包含的点}}for (int i = 0; i < points.size(); i++){if (i >= maxindex){Rightpointsvec.push_back(points[i]);//右边树包含的点}}//左边子树的头部点与尾部点pcl::PointXYZ left_headpoint = headpoint;pcl::PointXYZ left_endpoint = points[maxindex];//右边子树的头部点与尾部点pcl::PointXYZ right_headpoint = points[maxindex];pcl::PointXYZ right_endpoint = endpoint;//创建左、右树root->Right_node = new DPNode();BuildTree(root->Left_node, Leftpointsvec, left_headpoint, left_endpoint, thres_ds);BuildTree(root->Right_node, Rightpointsvec, right_headpoint, right_endpoint, thres_ds);}}
}

   但前面介绍的通过Mc=b方法解得的多项式轨迹只能保证在中间位置点处是不碰撞的,无法保证整个轨迹是不与障碍物相交的,轨迹可能会与障碍物相交,如下图所示:

在这里插入图片描述

   一种解决方法是,首先保证全局路径规划算法找到的初始路径是无碰撞的,一但生成的多项式轨迹与障碍物相交了,则可以在发生碰撞的位置附近再插入新的中间位置点,来使生成的多项式轨迹更加贴合最初的全局路径,如下图所示:

在这里插入图片描述

   通过上面介绍的RRT* +BIVP的方案,我们可以把RRT在低维空间找到的可行路径,拓展到高维的空间,而且比Kinodynamic RRT*算法更高效可靠。

在这里插入图片描述

   上述方法也存在一些缺陷,比如在障碍物比较多的时候,可能需要加入很多中间位置点,轨迹要很贴合RRT*找到的原始路径才能保证安全性,无人机的飞行可能不顺滑。



   参考资料:

   1、深蓝学院-移动机器人运动规划

   2、道格拉斯普克算法(简化线段点)


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/587643.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式详解:代理模式

1. 什么是代理模式&#xff1f; 代理模式&#xff08;Proxy Pattern&#xff09;是一种结构型设计模式&#xff0c;它允许通过代理对象控制对另一个对象的访问。代理模式在客户端和目标对象之间引入了一个代理对象&#xff0c;客户端通过代理对象间接地访问目标对象&#xff0c…

以太坊代币标准解读及相关Dapp的搭建

文章目录 什么是以太坊代币标准1、什么是以太坊2、以太坊代币标准 同质化代币 Dapp 搭建1、MetaMask 的安装2、Ganache 的安装3、实现 ERC-20 代币协议4、前端页面的编写5、部署流程及操作演示 什么是以太坊代币标准 1、什么是以太坊 以太坊&#xff08;Ethereum&#xff09;是…

idea构建maven项目报错的解决

使用idea创建了一个新的spring项目&#xff0c;maven配置完毕后&#xff0c;报错&#xff0c;引用的依赖不存在。 控制台报错信息如下&#xff1a; 通过查询资料&#xff0c;发现是阿里云的maven仓库中没有这个版本的jar包&#xff0c;导入无法引用到对应的依赖。 解决方法就是…

01 HAL库点亮LED灯

引言&#xff1a;本专题采取的开发平台是stm32cubeIDE&#xff0c; 文章后面会后提供 一 、 LED简介 LED&#xff08;Light Emitting Diode&#xff09;是一种半导体发光器件&#xff0c;能够将电能直接转化为光能的电子元件。它具有体积小、功耗低、寿命长等特点&#xff0c;广…

接入Cloudflare后Nginx和Django获取用户真实IP的办法

可以用Nginx的real_ip的相关命令来实现这个需求。 01-real_ip命令集详解 real_ip命令的使用分为两个步骤: 01-1-设置从哪些代理IP获取真实IP 第1个步骤&#xff1a;通过set_real_ip_from命令设置从哪些代理IP请求获取真实的IP,比如下面的命令&#xff1a; set_real_ip_from…

Navicat for MySQL 创建函数——报错1418

解决方法 1查看是否开启了创建函数的功能 输入下面语句查看是否开启了创建函数的功能 show variables like %func%; 下面为创建函数功能为开启的查询结果 如果不是上面的结果可以用下面的语句修改为开启 set GLOBAL log_bin_trust_function_creatorstrue; //或 set GLOBAL …

【一分钟】ThinkPHP v6.0 (poc-yaml-thinkphp-v6-file-write)环境复现及poc解析

写在前面 一分钟表示是非常短的文章&#xff0c;只会做简单的描述。旨在用较短的时间获取有用的信息 环境下载 官方环境下载器&#xff1a;https://getcomposer.org/Composer-Setup.exe 下载文档时可以设置代理&#xff0c;不然下载不上&#xff0c;你懂的 下载成功 cmd cd…

Redis经典五大类型源码及底层实现(二)

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱吃芝士的土豆倪&#xff0c;24届校招生Java选手&#xff0c;很高兴认识大家&#x1f4d5;系列专栏&#xff1a;Spring源码、JUC源码、Kafka原理、分布式技术原理、数据库技术&#x1f525;如果感觉博主的文章还不错的…

数据结构:第7章:查找(复习)

顺序查找&#xff1a; ASL 折半查找&#xff1a; 这里 j 表示 二叉查找树的第 j 层 二叉排序树&#xff1a; 二叉排序树&#xff08;Binary Search Tree&#xff0c;BST&#xff09;是一种特殊的二叉树&#xff0c;定义&#xff1a; 对于二叉排序树的每个节点&#xff0c;…

全球电商平台API数据稳定接入

API是什么&#xff1f; API就是接口&#xff0c;就是通道&#xff0c;负责一个程序和其他软件的沟通&#xff0c;本质是预先定义的函数。”比如&#xff1a;电脑需要调用手机里面的信息&#xff0c;这时候你会拿一根数据线将电脑手机连接起来&#xff0c;电脑和手机上连接数据…

Linux学习笔记(一)

如果有自己的物理服务器请先查看[这篇文章](https://blog.csdn.net/yasinawolaopo/article/details/132391128)文章目录 网卡配置Linux基础指令ls:列出目录内容cd(mkdir.rmkdir): 切换文件夹(创建,删除操作)cp:复制文件或目录mv:文件/文件夹移动cat:查看文件vi:文件查看编辑man…

二进制文件分割器

二进制文件分割器 时间: 2023.12.29 作者: FlameCyclone 自己写的一个能方便分割文件的小工具 使用说明 输出文件名 输出文件名规则前缀文件名开始固定名称序号(10/16进制显示, 宽度以输出最大序号为准)分割范围(16进制显示, 宽度以输出最大范围为准)CRC32校验码8字符组成…

touchHLE实战之游戏

前面推荐了touchHLE&#xff0c;号称可以玩旧的IOS游戏&#xff0c;但是国外还是管理的很严格的&#xff0c;一直没有找到合适的游戏文件测试。最近&#xff0c;发现官网上公布了开发者赠送的一款游戏&#xff0c;试了下完美运行。 看到国外贴吧reddit上有人推荐可用的ipa资源&…

蓝桥杯C/C++程序设计——成绩统计

题目描述 小蓝给学生们组织了一场考试&#xff0c;卷面总分为 100 分&#xff0c;每个学生的得分都是一个 0 到 100 的整数。 如果得分至少是 60 分&#xff0c;则称为及格。如果得分至少为 85 分&#xff0c;则称为优秀。 请计算及格率和优秀率&#xff0c;用百分数表示&am…

不同语言告别2023,迎接2024

一、序言 1.一名合格的程序员&#xff0c;始于Hello World&#xff0c;终于Hello World&#xff0c;用不同语言表达2023最后一天。 2.在这一年里&#xff0c;博主新接触了VUE、Python、人工智能、JAVA的框架SprinBoot、微服务等&#xff0c;然后一路来感谢大家的支持&#xf…

ClickHouse基础知识(一):ClickHouse 入门

1. ClickHouse 入门 ClickHouse 是俄罗斯的 Yandex 于 2016 年开源的列式存储数据库&#xff08;DBMS&#xff09;&#xff0c;使用 C 语言编写&#xff0c;主要用于在线分析处理查询&#xff08;OLAP&#xff09;&#xff0c;能够使用 SQL 查询实时生成分析数据报告。 2. Cl…

python使用selenium控制浏览器进行爬虫

这里以谷歌浏览器为例&#xff0c;需要安装一下chromedriver&#xff0c;其他浏览器也有相对应的driver&#xff0c;chromedriver下载地址&#xff1a;https://googlechromelabs.github.io/chrome-for-testing/ 然后是打开python环境安装一下依赖pip install selenium&#xf…

【低代码平台】10个开源免费Airtable 的替代方案

Airtable是一个易于使用的简单低代码平台&#xff0c;有助于团队协作管理复杂的数据表&#xff0c;并创建定制的工作流程。把它想象成一个类固醇上的云电子表格。 Airtable还简化了数据输入过程&#xff0c;连接和集成第三方服务和应用程序&#xff0c;并提供了许多数据导入/导…

毅速:3D打印技术传统模具行业影响深远

随着3D打印技术的不断发展和完善&#xff0c;一系列的优势使其在模具制造领域的应用越来越广泛&#xff0c;这一技术在模具行业的应用将为整个行业带来变革。 首先&#xff0c;3D打印技术将大幅提高模具制造的精度和效率。传统的模具制造过程中&#xff0c;由于加工设备的限制和…

gitee(码云)仓库内容更新,使用TortoiseGit同步本地仓库和远程仓库

前言&#xff1a; 网上有很多同步仓库教程&#xff0c;但都是git命令行操作。这篇使用TortoiseGit可视化操作同步本地仓库和远程仓库 克隆本地仓库&#xff0c;上传远程仓库&#xff0c;下载TortoiseGit可以看这篇使用gitee&#xff08;码云&#xff09;上传自己的代码&#xf…