YOLOv8改进 | 检测头篇 | ASFF改进YOLOv8检测头(全网首发)

一、本文介绍

本文给大家带来的改进机制是利用ASFF改进YOLOv8的检测头形成新的检测头Detect_ASFF,其主要创新是引入了一种自适应的空间特征融合方式,有效地过滤掉冲突信息,从而增强了尺度不变性。经过我的实验验证,修改后的检测头在所有的检测目标上均有大幅度的涨点效果,此版本为三头版本,后期我会在该检测头的基础上进行二次创新形成四头版本的Detect_ASFF助力小目标检测,本文的检测头非常推荐大家使用。

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

训练结果对比图-> 

目录

一、本文介绍

二、ASFF的基本框架原理

三、ASFF_Detect的核心代码

 四、手把手教你添加ASFF_Detect检测头

4.1 修改一

4.2 修改二

4.3 修改三 

4.4 修改四 

4.5 修改五 

4.6 修改六 

​​4.7 修改七 

4.8 修改八

4.9 修改九 

五、Detect_AFPN检测头的yaml文件

六、完美运行记录

七、本文总结


二、ASFF的基本框架原理

官方论文地址: 官方论文地址点击即可跳转

官方代码地址: 官方代码地址点击即可跳转


ASFF(自适应空间特征融合)方法针对单次对象检测任务提出,解决了不同特征尺度间的一致性问题。其主要创新是引入了一种自适应的空间特征融合方式,有效地过滤掉冲突信息,从而增强了尺度不变性。研究表明,将ASFF应用于YOLOv3可以显著提高在MS COCO数据集上的检测性能,实现了速度与准确性的平衡。ASFF方法可以通过反向传播进行训练,与模型无关,并且引入的计算开销很小,使其成为现有对象检测框架的一种实用增强。

ASFF的创新点主要包括:

1. 自适应空间特征融合:提出了一种新的金字塔特征融合策略,能够空间过滤冲突信息,压制不同尺度特征间的不一致性。

2. 改善尺度不变性:通过ASFF策略,显著提升了特征的尺度不变性,有助于提高对象检测的准确性。

3. 低推理开销:在提升检测性能的同时,几乎不增加额外的推理开销。

这些创新使ASFF成为单次对象检测领域的一个重要进展,特别是对处理不同尺度对象的能力的提升,所以将其对于一些单一尺度检测的Neck适合是不适用的大家需要注意这一点

这张图片展示了自适应空间特征融合(ASFF)机制的工作原理,它是用于单次对象检测的。在这种结构中,不同层级的特征(表示为不同颜色的层)首先通过各自的步幅(stride)进行下采样或上采样,以便所有特征具有相同的空间维度。

- Level 1、Level 2和Level 3指的是特征金字塔中不同层级的特征,每个层级都有不同的空间分辨率。
- ASFF-1、ASFF-2和ASFF-3表示应用了ASFF机制的不同层级的特征融合。
- 在ASFF-3的放大部分,我们可以看到来自其他层级的特征(x1→3、x2→3)被调整到与第三层(x3→3)相同的尺寸,然后它们通过学习到的权重图进行加权融合,生成最终用于预测的融合特征(y^3)。

通过这种方式,ASFF能够在每个空间位置自适应地选择最有用的特征,以提高检测的准确性。这种方法允许模型根据每个特定位置和尺度的上下文,灵活地决定哪些特征层级对最终预测最为重要。


三、ASFF_Detect的核心代码

现在是三头的检测版本,后期我会出四头的增加小目标检测层的版本给大家,其使用方式看章节四。

import torch
import torch.nn as nn
from ultralytics.utils.tal import  dist2bbox, make_anchors
import math
import torch.nn.functional as Fdef autopad(k, p=None, d=1):  # kernel, padding, dilation"""Pad to 'same' shape outputs."""if d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):"""Initialize Conv layer with given arguments including activation."""super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):"""Apply convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):"""Perform transposed convolution of 2D data."""return self.act(self.conv(x))class DFL(nn.Module):"""Integral module of Distribution Focal Loss (DFL).Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391"""def __init__(self, c1=16):"""Initialize a convolutional layer with a given number of input channels."""super().__init__()self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)x = torch.arange(c1, dtype=torch.float)self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))self.c1 = c1def forward(self, x):"""Applies a transformer layer on input tensor 'x' and returns a tensor."""b, c, a = x.shape  # batch, channels, anchorsreturn self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)# return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)class ASFFV5(nn.Module):def __init__(self, level, multiplier=1, rfb=False, vis=False, act_cfg=True):"""ASFF version for YoloV5 .different than YoloV3multiplier should be 1, 0.5 which means, the channel of ASFF can be512, 256, 128 -> multiplier=1256, 128, 64 -> multiplier=0.5For even smaller, you need change code manually."""super(ASFFV5, self).__init__()self.level = levelself.dim = [int(1024 * multiplier), int(512 * multiplier),int(256 * multiplier)]# print(self.dim)self.inter_dim = self.dim[self.level]if level == 0:self.stride_level_1 = Conv(int(512 * multiplier), self.inter_dim, 3, 2)self.stride_level_2 = Conv(int(256 * multiplier), self.inter_dim, 3, 2)self.expand = Conv(self.inter_dim, int(1024 * multiplier), 3, 1)elif level == 1:self.compress_level_0 = Conv(int(1024 * multiplier), self.inter_dim, 1, 1)self.stride_level_2 = Conv(int(256 * multiplier), self.inter_dim, 3, 2)self.expand = Conv(self.inter_dim, int(512 * multiplier), 3, 1)elif level == 2:self.compress_level_0 = Conv(int(1024 * multiplier), self.inter_dim, 1, 1)self.compress_level_1 = Conv(int(512 * multiplier), self.inter_dim, 1, 1)self.expand = Conv(self.inter_dim, int(256 * multiplier), 3, 1)# when adding rfb, we use half number of channels to save memorycompress_c = 8 if rfb else 16self.weight_level_0 = Conv(self.inter_dim, compress_c, 1, 1)self.weight_level_1 = Conv(self.inter_dim, compress_c, 1, 1)self.weight_level_2 = Conv(self.inter_dim, compress_c, 1, 1)self.weight_levels = Conv(compress_c * 3, 3, 1, 1)self.vis = visdef forward(self, x):  # l,m,s"""# 128, 256, 512512, 256, 128from small -> large"""x_level_0 = x[2]  # lx_level_1 = x[1]  # mx_level_2 = x[0]  # s# print('x_level_0: ', x_level_0.shape)# print('x_level_1: ', x_level_1.shape)# print('x_level_2: ', x_level_2.shape)if self.level == 0:level_0_resized = x_level_0level_1_resized = self.stride_level_1(x_level_1)level_2_downsampled_inter = F.max_pool2d(x_level_2, 3, stride=2, padding=1)level_2_resized = self.stride_level_2(level_2_downsampled_inter)elif self.level == 1:level_0_compressed = self.compress_level_0(x_level_0)level_0_resized = F.interpolate(level_0_compressed, scale_factor=2, mode='nearest')level_1_resized = x_level_1level_2_resized = self.stride_level_2(x_level_2)elif self.level == 2:level_0_compressed = self.compress_level_0(x_level_0)level_0_resized = F.interpolate(level_0_compressed, scale_factor=4, mode='nearest')x_level_1_compressed = self.compress_level_1(x_level_1)level_1_resized = F.interpolate(x_level_1_compressed, scale_factor=2, mode='nearest')level_2_resized = x_level_2# print('level: {}, l1_resized: {}, l2_resized: {}'.format(self.level,#      level_1_resized.shape, level_2_resized.shape))level_0_weight_v = self.weight_level_0(level_0_resized)level_1_weight_v = self.weight_level_1(level_1_resized)level_2_weight_v = self.weight_level_2(level_2_resized)# print('level_0_weight_v: ', level_0_weight_v.shape)# print('level_1_weight_v: ', level_1_weight_v.shape)# print('level_2_weight_v: ', level_2_weight_v.shape)levels_weight_v = torch.cat((level_0_weight_v, level_1_weight_v, level_2_weight_v), 1)levels_weight = self.weight_levels(levels_weight_v)levels_weight = F.softmax(levels_weight, dim=1)fused_out_reduced = level_0_resized * levels_weight[:, 0:1, :, :] + \level_1_resized * levels_weight[:, 1:2, :, :] + \level_2_resized * levels_weight[:, 2:, :, :]out = self.expand(fused_out_reduced)if self.vis:return out, levels_weight, fused_out_reduced.sum(dim=1)else:return outclass Detect_ASFF(nn.Module):"""YOLOv8 Detect head for detection models."""dynamic = False  # force grid reconstructionexport = False  # export modeshape = Noneanchors = torch.empty(0)  # initstrides = torch.empty(0)  # initdef __init__(self, nc=80, ch=(), multiplier=0.25, rfb=False):"""Initializes the YOLOv8 detection layer with specified number of classes and channels."""super().__init__()self.nc = nc  # number of classesself.nl = len(ch)  # number of detection layersself.reg_max = 16  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)self.no = nc + self.reg_max * 4  # number of outputs per anchorself.stride = torch.zeros(self.nl)  # strides computed during buildc2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100))  # channelsself.cv2 = nn.ModuleList(nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()self.l0_fusion = ASFFV5(level=0, multiplier=multiplier, rfb=rfb)self.l1_fusion = ASFFV5(level=1, multiplier=multiplier, rfb=rfb)self.l2_fusion = ASFFV5(level=2, multiplier=multiplier, rfb=rfb)def forward(self, x):"""Concatenates and returns predicted bounding boxes and class probabilities."""x1 = self.l0_fusion(x)x2 = self.l1_fusion(x)x3 = self.l2_fusion(x)x = [x3, x2, x1]shape = x[0].shape  # BCHWfor i in range(self.nl):x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)if self.training:return xelif self.dynamic or self.shape != shape:self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))self.shape = shapex_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'):  # avoid TF FlexSplitV opsbox = x_cat[:, :self.reg_max * 4]cls = x_cat[:, self.reg_max * 4:]else:box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.stridesif self.export and self.format in ('tflite', 'edgetpu'):# Normalize xywh with image size to mitigate quantization error of TFLite integer models as done in YOLOv5:# https://github.com/ultralytics/yolov5/blob/0c8de3fca4a702f8ff5c435e67f378d1fce70243/models/tf.py#L307-L309# See this PR for details: https://github.com/ultralytics/ultralytics/pull/1695img_h = shape[2] * self.stride[0]img_w = shape[3] * self.stride[0]img_size = torch.tensor([img_w, img_h, img_w, img_h], device=dbox.device).reshape(1, 4, 1)dbox /= img_sizey = torch.cat((dbox, cls.sigmoid()), 1)return y if self.export else (y, x)def bias_init(self):"""Initialize Detect() biases, WARNING: requires stride availability."""m = self  # self.model[-1]  # Detect() module# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequencyfor a, b, s in zip(m.cv2, m.cv3, m.stride):  # froma[-1].bias.data[:] = 1.0  # boxb[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)if __name__ == "__main__":# Generating Sample imageimage1 = (1, 64, 32, 32)image2 = (1, 128, 16, 16)image3 = (1, 256, 8, 8)image1 = torch.rand(image1)image2 = torch.rand(image2)image3 = torch.rand(image3)image = [image1, image2, image3]channel = (64, 128, 256)# Modelmobilenet_v1 = Detect_ASFF(nc=80, ch=channel)out = mobilenet_v1(image)print(out)

 四、手把手教你添加ASFF_Detect检测头

这里教大家添加检测头,检测头的添加相对于其它机制来说比较复杂一点,修改的地方比较多。

具体更多细节可以看我的添加教程博客,下面的教程也是完美运行的,看那个都行具体大家选择。

添加教程->YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头 


4.1 修改一

首先我们将上面的代码复制粘贴到'ultralytics/nn/modules' 目录下新建一个py文件复制粘贴进去,具体名字自己来定,我这里起名为ASFFHead.py。


4.2 修改二

我们新建完上面的文件之后,找到如下的文件'ultralytics/nn/tasks.py'。这里需要修改的地方有点多,总共有7处,但都很简单。首先我们在该文件的头部导入我们ASFFHead文件中的检测头。

​​


4.3 修改三 

找到如下的代码进行将检测头添加进去,这里给大家推荐个快速搜索的方法用ctrl+f然后搜索Detect然后就能快速查找了。

​​


4.4 修改四 

同理将我们的检测头添加到如下的代码里。

​​


4.5 修改五 

同理

​​


4.6 修改六 

同理

​​


4.7 修改七 

同理

​​


4.8 修改八

这里有一些不一样,我们需要加一行代码

        else:return 'detect'

为啥呢不一样,因为这里的m在代码执行过程中会将你的代码自动转换为小写,所以直接else方便一点,以后出现一些其它分割或者其它的教程的时候在提供其它的修改教程。 

​​


4.9 修改九 

这里也有一些不一样,需要自己手动添加一个括号,提醒一下大家不要直接添加,和我下面保持一致。

​​


五、Detect_AFPN检测头的yaml文件

这个代码的yaml文件和正常的对比也需要修改一下,如下->

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOP# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect_ASFF, [nc]]  # Detect(P3, P4, P5)


六、完美运行记录

最后提供一下完美运行的图片。

​​


七、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/587403.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Tomcat和Servlet

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、Tomcat是什么?1.1下载:1.2 tomcat是什么1.3启动服务器: 二.部署三、Servlet3.1创建项目3.2引入依赖pom.xml的所有代码 3…

Tg-5511cb: tcxo高稳定性+105℃高温

爱普生推的一款TG-5511CB是一种高稳定的TCXO温补晶体振荡器,频率范围十分广泛从 10mhz ~ 54mhz,它的电源电压只需要3.3V,无论是手机还是其他电子设备,都能轻松提供稳定的电力支持。频率/温度特性表现出色,0.28 10^6Ma…

(2023,提示扩展,图像反演,文本到文本生成)自适应文本到图像生成的提示扩展

Prompt Expansion for Adaptive Text-to-Image Generation 公众:EDPJ(添加 VX:CV_EDPJ 或直接进 Q 交流群:922230617 获取资料) 目录 0. 摘要 3. 提示扩展数据集 3.1 图像审美数据集 3.2 图像到文本反演 3.3 查…

Obsidian笔记软件无公网远程同步数据到群辉Webdav

文章目录 1. 群晖开启Webdav服务2. 群晖安装Cpolar3. 配置Webdav远程地址4. Obsidian 安装Remotely Save5. Obsidian远程连接Webdav6. 固定Cpolar公网地址7. PC和移动端笔记同步演示 Obsidian是一款笔记软件,它基于Markdown,支持Windows、macOS、iOS和An…

个人博客主题 vuepress-hope

文章目录 1. 简介2. 配置2.1 个人博客,社媒链接配置 非常推荐vuepress-hope 1. 简介 下面的我的博客文章的截图 通过md写博客并且可以同步到github-page上 2. 配置 2.1 个人博客,社媒链接配置 配置文件 .vuepress/theme.ts blog: {medias: {BiliB…

计算机毕业设计 基于HTML5+CSS3的在线英语阅读分级平台的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…

C#编程-使用变量

使用变量 请考虑以下场景:您必须创建一个程序,接受来自用户的两个数字并在屏幕上显示着两个数字之和。现在,读取用户提供的数字时,您需要将这些数字存储在内存中的某个位置,以便您能对这些数字执行加操作。您可以使用变量将这些数字存储在内存中。 下图显示了使用变量将…

股票价格预测 | Python实现Autoformer, FEDformer和PatchTST等模型用于股价预测

文章目录 效果一览文章概述环境描述源码设计效果一览 文章概述 Autoformer、FEDformer和PatchTST是一些用于时间序列预测,包括股价预测的模型。它们都是在Transformer模型的基础上进行了改进和扩展,以更好地适应时间序列数据的特点。 Autoformer:Autoformer是一种自适应Tran…

pytorch05:卷积、池化、激活

目录 一、卷积1.1 卷积的概念1.2 卷积可视化1.3 卷积的维度1.4 nn.Conv2d1.4.1 无padding 无stride卷积1.4.2 无padding stride2卷积1.4.3 padding2的卷积1.4.4 空洞卷积1.4.5 分组卷积 1.5 卷积输出尺寸计算1.6 卷积的维度1.7 转置卷积1.7.1 为什么被称为转置卷积1.7.2 nn.Con…

【HDFS联邦(2)】HDFS Router-based Federation官网解读:HDFSRouterFederation的架构、各组件基本原理

文章目录 一. 介绍二、HDFS Router-based Federation 架构1. 示例说明2. Router2.1. Federated interface2.2. Router heartbeat2.3. NameNode heartbeat2.4. Availability and fault toleranceInterfaces 3. Quota management4. State Store 三、部署 ing 本文主要参考官网&am…

JavaScript系列——正则表达式

文章目录 需求场景正则表达式的定义创建正则表达式通过 / 表示式/ 创建通过构造函数创建 编写一个正则表达式的模式使用简单模式使用特殊字符常用特殊字符列表特殊字符组和范围 正则表达式使用代码演示 常用示例验证手机号码合法性 小结 需求场景 在前端开发领域,在…

C语言 指针

C语言学习! 目录 文章目录 前言 一、指针是什么? 二、指针变量的大小 三、指针和指针类型 四、指针和函数 五、野指针 5.1野指针成因 5.2 如何规避野指针 六、指针运算 6.1 指针- 整数 6.2 指针-指针 6.3 指针的关系运算 总结 前言 指针理解的2个要点&a…

前端Vue中自定义Popup弹框、按钮及内容的设计与实践

标题:前端Vue中自定义Popup弹框、按钮及内容的设计与实践 一、引言 在Web前端开发中,弹框(Popup)是一种常见的用户界面元素,用于向用户显示额外的信息或提供额外的功能。然而,标准的弹框往往不能满足所有…

Django学习3——靓号管理

目录 靓号管理 表结构和数据 根据表结构的需求,在models.py中创建类(由类生成数据库中的表) 在数据库生成表 自己在数据模拟创建一些数据: 靓号列表 新建靓号 编辑靓号 删除靓号 搜索靓号 靓号管理 表结构和数据 根…

DHCP学习记录

目录 客户端向DHCP服务端申请租用IP的4个阶段: 客户端向HDCP服务器续租IP过程: 客户端重新连接租用IP过程: 客户端释放IP 声明: (Dynamic Host Configuration Protocol)动态主机配置协议,客户端向DHCP服务端申请获得ip的一种约定俗成的话语(协议) 手工配置方式…

啊哈c语言——4.10、for隆重登场(一起来找茬)

下面这段代码是求12345678910的值。其中有4个错误&#xff0c; 快来改正吧&#xff01; 改正后&#xff1a; #include <stdio.h> #include <stdlib.h> int main( ) {int i, sum;sum1;for(i1; i<10;i){sumsum*i;}printf("%d", sum);system("paus…

如何在无公网IP环境使用Windows远程桌面Ubuntu

文章目录 一、 同个局域网内远程桌面Ubuntu二、使用Windows远程桌面连接三、公网环境系统远程桌面Ubuntu1. 注册cpolar账号并安装2. 创建隧道&#xff0c;映射3389端口3. Windows远程桌面Ubuntu 四、 配置固定公网地址远程Ubuntu1. 保留固定TCP地址2. 配置固定的TCP地址3. 使用…

appium安装运行报错的解决方案

appium版本2.3 java17 运行报错&#xff1a; Caused by: org.openqa.selenium.SessionNotCreatedException: Could not start a new session. Response code 500. Message: An unknown server-side error occurred while processing the command. Original error: Could not…

40道MyBatis面试题带答案(很全)

1. 什么是MyBatis &#xff08;1&#xff09;Mybatis是一个半ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;它内部封装了JDBC&#xff0c;开发时只需要关注SQL语句本身&#xff0c;不需要花费精力去处理加载驱动、创建连接、创建statement等繁杂的过程。程序员直接…

海康visionmaster-渲染结果:通过绑定流程或模块获取 渲染结果的方法

描述 环境&#xff1a;VM4.0.0 VS2015 及以上 现象&#xff1a;方案或流程运行执行之后&#xff0c;就可以获取结果&#xff0c;可以通过获取渲染结果和数据结果&#xff0c; 渲染结果通过绑定渲染控件进行显示。 解答 渲染结果的显示可以通过渲染控件绑定流程或者模块&#x…