11. 标准库浏览 – Part II

11. 标准库浏览 – Part II

第二部分包含了支持专业编程工作所需的更高级的模块,这些模块很少出现在小脚本中。

11.1. 输出格式

repr 模块为大型的或深度嵌套的容器缩写显示提供了 repr() 函数的一个定制版本:

>>> import repr
>>> repr.repr(set('supercalifragilisticexpialidocious'))
"set(['a', 'c', 'd', 'e', 'f', 'g', ...])"

pprint 模块给老手提供了一种解释器,可读的方式深入控制内置和用户自定义对象的打印。当输出超过一行的时候,“美化打印(pretty printer)”添加断行和标识符,使得数据结构显示的更清晰:

>>> import pprint
>>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
...     'yellow'], 'blue']]]
...
>>> pprint.pprint(t, width=30)
[[[['black', 'cyan'],
   'white',
   ['green', 'red']],
  [['magenta', 'yellow'],
   'blue']]]

textwrap 模块格式化文本段落以适应设定的屏宽:

>>> import textwrap
>>> doc = """The wrap() method is just like fill() except that it returns
... a list of strings instead of one big string with newlines to separate
... the wrapped lines."""
...
>>> print textwrap.fill(doc, width=40)
The wrap() method is just like fill()
except that it returns a list of strings
instead of one big string with newlines
to separate the wrapped lines.

locale 模块按访问预定好的国家信息数据库。locale 的格式化函数属性集提供了一个直接方式以分组标示格式化数字:

>>> import locale
>>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
'English_United States.1252'
>>> conv = locale.localeconv()          # get a mapping of conventions
>>> x = 1234567.8
>>> locale.format("%d", x, grouping=True)
'1,234,567'
>>> locale.format_string("%s%.*f", (conv['currency_symbol'],
...                      conv['frac_digits'], x), grouping=True)
'$1,234,567.80'

11.2. 模板

string 提供了一个灵活多变的模版类 Template ,使用它最终用户可以简单地进行编辑。这使用户可以在不进行改变的情况下定制他们的应用程序。

格式使用 为开头的 Python 合法标识(数字、字母和下划线)作为占位符。占位符外面的大括号使它可以和其它的字符不加空格混在一起。创建一个单独的 :$$$$

>>> from string import Template
>>> t = Template('${village}folk send $$10 to $cause.')
>>> t.substitute(village='Nottingham', cause='the ditch fund')
'Nottinghamfolk send $10 to the ditch fund.'

当一个占位符在字典或关键字参数中没有被提供时,substitute() 方法就会抛出一个 KeyError 异常。对于邮件合并风格的应用程序,用户提供的数据可能并不完整,这时使用 safe_substitute() 方法可能更适合。如果数据不完整,它就不会改变占位符:

>>> t = Template('Return the $item to $owner.')
>>> d = dict(item='unladen swallow')
>>> t.substitute(d)
Traceback (most recent call last):
  . . .
KeyError: 'owner'
>>> t.safe_substitute(d)
'Return the unladen swallow to $owner.'

模板子类可以指定一个自定义分隔符。例如,图像查看器的批量重命名工具可能选择使用百分号作为占位符,像当前日期,图片序列号或文件格式:

>>> import time, os.path
>>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
>>> class BatchRename(Template):
...     delimiter = '%'
>>> fmt = input('Enter rename style (%d-date %n-seqnum %f-format):  ')
Enter rename style (%d-date %n-seqnum %f-format):  Ashley_%n%f>>> t = BatchRename(fmt)
>>> date = time.strftime('%d%b%y')
>>> for i, filename in enumerate(photofiles):
...     base, ext = os.path.splitext(filename)
...     newname = t.substitute(d=date, n=i, f=ext)
...     print('{0} --> {1}'.format(filename, newname))img_1074.jpg --> Ashley_0.jpg
img_1076.jpg --> Ashley_1.jpg
img_1077.jpg --> Ashley_2.jpg

模板的另一个应用是把多样的输出格式细节从程序逻辑中分类出来。这便使得 XML 文件,纯文本报表和 HTML WEB 报表定制模板成为可能。

11.3. 使用二进制数据记录布局

struct 模块为使用变长的二进制记录格式提供了 pack() 和 unpack() 函数。下面的示例演示了在不使用 zipfile 模块的情况下如何迭代一个 ZIP 文件的头信息。压缩码 和 分别表示2和4字节无符号数字, 表明它们都是标准大小并且按照 little-endian 字节排序:"H""I""<"

import structwith open('myfile.zip', 'rb') as f:data = f.read()start = 0
for i in range(3):                      # show the first 3 file headersstart += 14fields = struct.unpack('<IIIHH', data[start:start+16])crc32, comp_size, uncomp_size, filenamesize, extra_size = fieldsstart += 16filename = data[start:start+filenamesize]start += filenamesizeextra = data[start:start+extra_size]print filename, hex(crc32), comp_size, uncomp_sizestart += extra_size + comp_size     # skip to the next header

11.4. 多线程

线程是一个分离无顺序依赖关系任务的技术。在某些任务运行于后台的时候应用程序会变得迟缓,线程可以提升其速度。一个有关的用途是在 I/O 的同时其它线程可以并行计算。

下面的代码显示了高级模块 threading 如何在主程序运行的同时运行任务:

import threading, zipfileclass AsyncZip(threading.Thread):def __init__(self, infile, outfile):threading.Thread.__init__(self)self.infile = infileself.outfile = outfiledef run(self):f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)f.write(self.infile)f.close()print 'Finished background zip of:', self.infilebackground = AsyncZip('mydata.txt', 'myarchive.zip')
background.start()
print 'The main program continues to run in foreground.'background.join()    # Wait for the background task to finish
print 'Main program waited until background was done.'

多线程应用程序的主要挑战是协调线程,诸如线程间共享数据或其它资源。为了达到那个目的,线程模块提供了许多同步化的原生支持,包括:锁,事件,条件变量和信号灯。

尽管这些工具很强大,微小的设计错误也可能造成难以挽回的故障。因此,任务协调的首选方法是把对一个资源的所有访问集中在一个单独的线程中,然后使用 Queue 模块用那个线程服务其他线程的请求。为内部线程通信和协调而使用 Queue.Queue 对象的应用程序更易于设计,更可读,并且更可靠。

11.5. 日志

logging 模块提供了完整和灵活的日志系统。它最简单的用法是记录信息并发送到一个文件或 :sys.stderr

import logging
logging.debug('Debugging information')
logging.info('Informational message')
logging.warning('Warning:config file %s not found', 'server.conf')
logging.error('Error occurred')
logging.critical('Critical error -- shutting down')

输出如下:

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down

默认情况下捕获信息和调试消息并将输出发送到标准错误流。其它可选的路由信息方式通过 email,数据报文,socket 或者 HTTP Server。基于消息属性,新的过滤器可以选择不同的路由:,,, 和 。DEBUGINFOWARNINGERRORCRITICAL

日志系统可以直接在 Python 代码中定制,也可以不经过应用程序直接在一个用户可编辑的配置文件中加载。

11.6. 弱引用

Python 自动进行内存管理(对大多数的对象进行引用计数和垃圾回收 garbage collection 以循环利用)在最后一个引用消失后,内存会很快释放。

这个工作方式对大多数应用程序工作良好,但是偶尔会需要跟踪对象来做一些事。不幸的是,仅仅为跟踪它们创建引用也会使其长期存在。weakref 模块提供了不用创建引用的跟踪对象工具,一旦对象不再存在,它自动从弱引用表上删除并触发回调。典型的应用包括捕获难以构造的对象:

>>> import weakref, gc
>>> class A:
...     def __init__(self, value):
...             self.value = value
...     def __repr__(self):
...             return str(self.value)
...
>>> a = A(10)                   # create a reference
>>> d = weakref.WeakValueDictionary()
>>> d['primary'] = a            # does not create a reference
>>> d['primary']                # fetch the object if it is still alive
10
>>> del a                       # remove the one reference
>>> gc.collect()                # run garbage collection right away
0
>>> d['primary']                # entry was automatically removed
Traceback (most recent call last):File "<stdin>", line 1, in <module>d['primary']                # entry was automatically removedFile "C:/python33/lib/weakref.py", line 46, in __getitem__o = self.data[key]()
KeyError: 'primary'

11.7. 列表工具

很多数据结构可能会用到内置列表类型。然而,有时可能需要不同性能代价的实现。

array 模块提供了一个类似列表的 array() 对象,它仅仅是存储数据,更为紧凑。以下的示例演示了一个存储双字节无符号整数的数组(类型编码 )而非存储 16 字节 Python 整数对象的普通正规列表:"H"

>>> from array import array
>>> a = array('H', [4000, 10, 700, 22222])
>>> sum(a)
26932
>>> a[1:3]
array('H', [10, 700])

collections 模块提供了类似列表的 deque() 对象,它从左边添加(append)和弹出(pop)更快,但是在内部查询更慢。这些对象更适用于队列实现和广度优先的树搜索:

>>> from collections import deque
>>> d = deque(["task1", "task2", "task3"])
>>> d.append("task4")
>>> print "Handling", d.popleft()
Handling task1unsearched = deque([starting_node])
def breadth_first_search(unsearched):
    node = unsearched.popleft()
    for m in gen_moves(node):
        if is_goal(m):
            return m
        unsearched.append(m)

除了链表的替代实现,该库还提供了 bisect 这样的模块以操作存储链表:

>>> import bisect
>>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
>>> bisect.insort(scores, (300, 'ruby'))
>>> scores
[(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]

heapq 提供了基于正规链表的堆实现。最小的值总是保持在 0 点。这在希望循环访问最小元素但是不想执行完整堆排序的时候非常有用:

>>> from heapq import heapify, heappop, heappush
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> heapify(data)                      # rearrange the list into heap order
>>> heappush(data, -5)                 # add a new entry
>>> [heappop(data) for i in range(3)]  # fetch the three smallest entries
[-5, 0, 1]

11.8. 十进制浮点数算法

decimal 模块提供了一个 Decimal 数据类型用于浮点数计算。相比内置的二进制浮点数实现 float,这个类型有助于:

  • 金融应用和其它需要精确十进制表达的场合,

  • 控制精度,

  • 控制舍入以适应法律或者规定要求,

  • 确保十进制数位精度,

    或者

  • 用户希望计算结果与手算相符的场合。

例如,计算 70 分电话费的 5% 税计算,十进制浮点数和二进制浮点数计算结果的差别如下。如果在分值上舍入,这个差别就很重要了:

>>> from decimal import *
>>> round(Decimal('0.70') * Decimal('1.05'), 2)
Decimal('0.74')
>>> round(.70 * 1.05, 2)
0.73

Decimal 的结果总是保有结尾的 0,自动从两位精度延伸到4位。Decimal 重现了手工的数学运算,这就确保了二进制浮点数无法精确保有的数据精度。

高精度使 Decimal 可以执行二进制浮点数无法进行的模运算和等值测试:

>>> Decimal('1.00') % Decimal('.10')
Decimal('0.00')
>>> 1.00 % 0.10
0.09999999999999995>>> sum([Decimal('0.1')]*10) == Decimal('1.0')
True
>>> sum([0.1]*10) == 1.0
False

decimal 提供了必须的高精度算法:

>>> getcontext().prec = 36
>>> Decimal(1) / Decimal(7)
Decimal('0.142857142857142857142857142857142857')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/587093.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++之std::decay

1.简介 std::decay是C11之后引进的模板编程工具&#xff0c;它的主要作用是将给定的类型T转换为它的“衰变”类型。这个“衰变”类型是指去除类型T的所有引用、常量和易变性限定符&#xff0c;以及将所有数组和函数转换为对应的指针类型后得到的类型&#xff1b;在头文件 <…

c++哈希表——超实用的数据结构

文章目录 1. 概念引入1.1 整数哈希1.1.1 直接取余法。1.1.2 哈希冲突1.1.2.1 开放寻址法1.1.2.2 拉链法 1.2 字符串哈希 3.结语 1. 概念引入 哈希表是一种高效的数据结构 。 H a s h Hash Hash表又称为散列表&#xff0c;一般由 H a s h Hash Hash函数(散列函数)与链表结构共同…

docker学习——汇总版

历时一个月将docker系统的学习了一下&#xff0c;并且记录了详细的笔记和实践过程。 希望能对工作需要的小伙伴们有所帮助~ docker基础篇 docker学习&#xff08;一、docker与VM对比&#xff09; docker学习&#xff08;二、安装docker&#xff09; docker学习&#xff08;…

用通俗易懂的方式讲解大模型:一个强大的 LLM 微调工具 LLaMA Factory

LLM&#xff08;大语言模型&#xff09;微调一直都是老大难问题&#xff0c;不仅因为微调需要大量的计算资源&#xff0c;而且微调的方法也很多&#xff0c;要去尝试每种方法的效果&#xff0c;需要安装大量的第三方库和依赖&#xff0c;甚至要接入一些框架&#xff0c;可能在还…

【INTEL(ALTERA)】使用 ReadFile 读取时出错: juart-terminal: error: 从 STDIO 收集输入

说明 由于 英特尔 Quartus Prime Pro Edition 软件版本 22.4 中存在一个问题&#xff0c;您在从 Windows 操作系统上的 Nios V 命令外壳输入字符时可能会看到此错误&#xff1a; 使用 ReadFile 读取时出错&#xff1a; juart-terminal&#xff1a; error&#xff1a; 从 STDI…

机器学习(二) -- 数据预处理(3)

系列文章目录 机器学习&#xff08;一&#xff09; -- 概述 机器学习&#xff08;二&#xff09; -- 数据预处理&#xff08;1-3&#xff09; 未完待续…… 目录 前言 tips&#xff1a;这里只是总结&#xff0c;不是教程哈。本章开始会用到numpy&#xff0c;pandas以及matpl…

亚信安慧AntDB数据库引领数字时代通信创新

在数字经济与实体经济深度融合的时代&#xff0c;通信行业正迎来前所未有的新机遇。特别是在中国信通院的预测中&#xff0c;2027年5G专网市场规模预计将达到802亿元&#xff0c;呈现出显著的增长态势&#xff0c;年复合增长率高达42%。 亚信安慧AntDB数据库一直致力于紧跟科技…

不同角度深入探讨Maya和Blender这两款软件的差异

当我们面对三维建模软件的选择时&#xff0c;许多初学者可能会感到迷茫。今天&#xff0c;我们将从不同角度深入探讨Maya和Blender这两款软件的差异&#xff0c;特别是对于游戏建模领域的用户来说&#xff0c;这将有助于您更好地理解两者之间的区别。 软件授权与开发背景&#…

QT上位机开发(倒计时软件)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 倒计时软件是生活中经常遇到的一种场景。比如运动跑步&#xff0c;比如学校考试&#xff0c;比如论文答辩等等&#xff0c;只要有时间限制规定的地…

Debezium发布历史36

原文地址&#xff1a; https://debezium.io/blog/2018/07/26/debezium-0-9-0-alpha1-released/ 欢迎关注留言&#xff0c;我是收集整理小能手&#xff0c;工具翻译&#xff0c;仅供参考&#xff0c;笔芯笔芯. Debezium 0.9 Alpha1 和 0.8.1 发布 七月 26, 2018 作者&#xff…

C#,入门教程(02)—— Visual Studio 2022开发环境搭建图文教程

如果这是您阅读的本专栏的第一篇博文&#xff0c;建议先阅读如何安装Visual Studio 2022。 C#&#xff0c;入门教程(01)—— Visual Studio 2022 免费安装的详细图文与动画教程https://blog.csdn.net/beijinghorn/article/details/123350910 一、简单准备 开始学习、编写程序…

日志高亮 | notepad

高亮显示日志 日志文件无法清晰看到关键问题所在? 看到一堆日志头疼?高亮日志可以清晰展示出日志的 ERROR级等各种等级的问题, 一下浏览出日志关键所在 tailspin 项目地址&#xff1a; https://githubfast.com/bensadeh/tailspin 使用Rust包管理器cargo安装 安装 - Cargo 手…

3D视觉-ToF测量法(Time of Flight)

概念 ToF 是 Time of Flight 的缩写&#xff0c; ToF 测量法又被称作飞光时间测量法&#xff0c;是通过给目标连续发射激光脉冲&#xff0c;然后用传感器接收在被测平面上反射回来的光脉冲&#xff0c;通过计算光脉冲的飞行往返时间来计算得到确切的目标物距离。因为返回时间很…

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK设置相机本身的数据保存(CustomData)功能(C#)

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK设置相机本身的数据保存&#xff08;CustomData&#xff09;功能&#xff08;C#&#xff09; Baumer工业相机Baumer工业相机的数据保存&#xff08;CustomData&#xff09;功能的技术背景CameraExplorer如何使用图像剪切&#xff…

优化算法3D可视化

编程实现优化算法&#xff0c;并3D可视化 1. 函数3D可视化 分别画出 和 的3D图 import numpy as np from matplotlib import pyplot as plt import torch# 画出x**2 class Op(object):def __init__(self):passdef __call__(self, inputs):return self.forward(inputs)def for…

Python 下载与安装

1、下载 打开Python官网&#xff1a;Welcome to Python.org 点击下图所示的【Downloads】按钮进入下载页面。 ​ 进入下载页面后下拉至下图位置&#xff0c;选择版本&#xff0c;点击下载按钮下载。 页面会跳转至下一页下载页面&#xff0c;下拉到下图位置&#xff0c;选择…

PHP8使用PDO对象增删改查MySql数据库

PDO简介 PDO&#xff08;PHP Data Objects&#xff09;是一个PHP扩展&#xff0c;它提供了一个数据库访问层&#xff0c;允许开发人员使用统一的接口访问各种数据库。PDO 提供了一种用于执行查询和获取结果的简单而一致的API。 以下是PDO的一些主要特点&#xff1a; 统一接口…

荣耀之城(富饶之地)

规则简介 这是一个回合制的游戏&#xff0c;每个回合都是先选角色然后按照角色编号依次执行回合。 8个角色&#xff1a;刺客、小偷、魔术师、国王、住持、商人、建筑师、领主 根据人数的不同&#xff0c;按照不同的规则依次选取一个角色&#xff0c;国王第一个选&#xff0c…

2023年03月17日_微软和谷歌办公AI的感慨

2023年3月17日 最近这个科技圈的消息 有点爆炸的让人应接不暇了 各种大公司简直就是神仙打架 你从来没有见过这么密集的 这么高频的产品发布 昨天微软是发布了Office 365 Copilot 在里边提供了大量的AI的功能 然后谷歌呢也发布了这个Google Workspace AI 也是跟365 Cop…

『番外篇七』SwiftUI 获取视图全局位置在 NavigationStack 中失效的解决方法

概览 在 番外篇六』SwiftUI 取得任意视图全局位置的三种方法 这篇博文里,我们详细讨论了在 SwiftUI 中获取任意视图全局坐标的几种方法。 不过,我们也从中提到了某些方法无法适用于 NavigationStack 视图,本篇博文由此应运而生。 在本篇博文种,您将学到如下内容: 概览1.…