大语言模型(LLM)框架及微调 (Fine Tuning)

        大语言模型(LLM) 技术作为人工智能领域的一项重要创 新在今年引起了广泛的关注。

        LLM 是利用深度学习和大数据训练的人工智能系统,专门 设计来理解、生成和回应自然语言。这些模型通过分析大量 的文本数据来学习语言的结构和用法,从而能够执行各种语 言相关任务。

        LLM 技术也发挥了关键作用。此外,它还在代码 生成、文本摘要、翻译等任务中展现了强大的通用性。

         LLM 技术应用类型分别为 大模型、AI编程、工具和平台、基础设施、算力等。

一、LLM技术背景

        Transformer 架构和预训练与微调策略是 LLM 技术的核心,随着大规模语言数据集的可用性和计算能力的提升,研究者们开始设计更大规模的神经网络,以提高对语言复杂性的理解。

        GPT (Generative Pre-trained Transformer) 的提出标志着 LLM 技术的飞速发展,其预训练和微调的方法为语言任务提供了前所未有的性能,以此为基础,多模态融合的应用使得 LLM 更全面地处理各种信息,支持更广泛的应用领域。

 图源:https://postgresml.org/docs/.gitbook/assets/ml_system.svg

二、LLM底座基础设施

2.1、向量数据库及向量支持

        向量数据库是专门用于存储和检索向量数据的数据库,它可以为 LLM 提供高效的存储和检索能力。通过数据向量化,实现了在向量数据库中进行高效的相似性计算和查询。 根据向量数据库的的实现方式,可以将向量数据库大致分为两类:

        向量数据库:原生的向量数据库专门为存储和检索向量而设计, 所管理的数据是基于对象或数据点的向量表示进行 组织和索引。 包括 Chroma、LanceDB、Margo、Milvus、Pinecone等均属于原生向量数据库。

        传统数据库支持向量:除了选择专业的向量数据库,对传统数据库添加“向量支持”也是主流方案。比如Redis、PostgreSQL、ClickHome、Elasticsearch等传统数据库均已支持向量检索。

向量数据库市场及融资情况

        ChatGPT 问世以来,大模型星火初始,向量数据 库不但获得了技术领域的关注,也逐渐吸引了市场和资本的注 意力。近两年来,向量数据库公司迎来了一波融资潮:

2.2、LLM大模型框架及微调

        大模型框架指专门设计用于构建、训练和部署大型机器 学习模型和深度学习模型的软件框架。这些框架提供了 必要的工具和库,使开发者能够更容易地处理大量的数 据、管理巨大的网络参数量,并有效地利用硬件资源。

        微调(Fine Tuning)是在大模型框架基础上进行的一个 关键步骤。在模型经过初步的大规模预训练后,微调是 用较小、特定领域的数据集对模型进行后续训练,以使 其更好地适应特定的任务或应用场景。这一步骤使得通 用的大型模型能够在特定任务上表现出更高的精度和更 好的效果。

        大模型框架提供了 LLM 的基本能力和普适性,而微调 则是实现特定应用和优化性能的关键环节。两者相结合, 使得 LLM 在广泛的应用场景中都能发挥出色的性能。

 2.2、LLM大模型框架特点

        抽象和简化:大模型开发框架通过提供高 层次的 API 简化了复杂模型的构建过程。这 些 API 抽象掉了许多底层细节,使开发者能 够专注于模型的设计和训练策略

        性能优化:这些框架经过优化,以充分利用 GPU、TPU 等高性能计算硬件,以加速模型 的训练和推理过程。

        大型数据集:它们提供工具来有效地加 载、处理和迭代大型数据集,这对于训练大 型模型尤为重要。

        生态扩展:为了处理大型数据集和大规模参 数网络,这些框架通常设计得易于水平扩展, 支持在多个处理器或多个服务器上并行处理。

        国产深度学习框架 OneFlow 架构 (图源:https://www.oneflow.org/a/chanpin/oneflow/)

2.3、微调模型步骤

1.选择预训练模型:选取一个已经在大量数据上进 行过预训练的模型作为起点;

2.准备任务特定数据:收集与目标任务直接相关的 数据集,这些数据将用于微调模型;

3.微调训练:在任务特定数据上训练预训练的模型, 调整模型参数以适应特定任务;

4.评估:在验证集上评估模型性能,确保模型对新 数据有良好的泛化能力;

5.部署:将性能经验证的模型部署到实际应用中去。

 微调的过程也是分类模型训练的过程

(图源:https://medium.com/mlearning-ai/what-is-a-fine-tuned-llm-67bf0b5df081)

 原文:《LLM技术报告》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/586071.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【网络安全】全网最全的渗透测试介绍(超详细)

渗透测试介绍 渗透测试就是模拟攻击者入侵系统,对系统进行一步步地渗透,发现系统地脆弱环节和隐藏风险。最后形成测试报告提供给系统所有者。系统所有者可根据该测试报告对系统进行加固,提升系统的安全性,防止真正的攻击者入侵。…

【Unity】【FBX】如何将FBX模型导入Unity

【背景】 网上能够找到不少不错的FBX模型资源,大大加速游戏开发时间。如何将这些FBX导入Unity呢? 【步骤】 打开Unity项目文件,进入场景。 点击Projects面板,右键选择Import New Assets 选中FBX文件后导入。Assets文件夹中就会…

【网络安全】upload靶场pass1-10思路

目录 Pass-1 Pass-2 Pass-3 Pass-4 Pass-5 Pass-6 Pass-7 Pass-8 Pass-9 Pass-10 🌈嗨!我是Filotimo__🌈。很高兴与大家相识,希望我的博客能对你有所帮助。 💡本文由Filotimo__✍️原创,首发于CSDN&#x1…

求解拍频的信号特征

这张图上,时域已经明显产生调幅波的拍频特征。利用宏观的拍频特征可以肉眼识读两个信号的频差: 一秒是69.42个像素。拍频周期是:21.857像素。所以,拍频的周期是:3.7161Hz. 其中一个频率是50Hz,另一个频率…

C# Winform教程(二):基础窗口程序

1、介绍 winform应用程序是一种智能客户端技术,我们可以使用winform应用程序帮助我们获得信息或者传输信息等。 2、常用属性 Name:在后台要获得前台的控件对象,需要使用Name属性。 Visible:指示一个控件是否可见、 Enable&…

验证 Mixtral-8x7B-Instruct-v0.1 和 LangChain SQLDatabaseToolkit 的集成效果

验证 Mixtral-8x7B-Instruct-v0.1 和 LangChain SQLDatabaseToolkit 的集成效果 0. 背景1. 验证环境说明2. 验证开始2-1. 准备测试数据库2-2. 读取环境配置信息2-3. 导入依赖包2-3. 创建 SQLDatabaseToolkit 对象和 AgentExecutor 对象2-4. 第1个测试 - 描述一个表2-5. 第2个测…

算法训练第五十三天|1143. 最长公共子序列、1035. 不相交的线、53. 最大子数组和

1143. 最长公共子序列: 题目链接 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。 一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对…

手机怎么下载python并安装,如何在手机上下载python

大家好,小编来为大家解答以下问题,如何在手机上下载python 3.7版本,手机怎么下载python并安装,现在让我们一起来看看吧! 如何在手机上下载python 应用市场内搜索下载下载Python在您开始之前,在你的计算机将…

【leetcode100-025】【链表/快慢指针】环形链表

【题干】 给你一个链表的头节点 head ,判断链表中是否有环。 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置&a…

软件测试/测试开发丨Python 虚拟环境及pip环境管理

venv 虚拟环境管理 venv 虚拟环境的优点 独立的 Python 环境,不会产生冲突有助于包的管理删除和卸载方便 venv 使用方法 创建虚拟环境 python3 -m venv test 激活虚拟环境 切换指定文件夹Windows:/Scripts/macOS:/bin/ 执行指令&#xff…

欢迎来到Web3.0的世界:Solidity智能合约安全漏洞分析

智能合约概述 智能合约是运行在区块链网络中的一段程序,经由多方机构自动执行预先设定的逻辑,程序执行后,网络上的最终状态将不可改变。智能合约本质上是传统合约的数字版本,由去中心化的计算机网络执行,而不是由政府…

MIT 6.S081---Lab util: Unix utilities

环境搭建 基本环境 选择的是Vmwareubuntu的配置,注意ubuntu的版本一定要是20.04,作者试过16版本,不行,建议直接安装20.04版,不然环境配置都浪费不少时间有点得不偿失。(Vmware可以用Virtualbox代替&#…

【消息中间件】Rabbitmq消息可靠性、持久化机制、各种消费

原文作者:我辈李想 版权声明:文章原创,转载时请务必加上原文超链接、作者信息和本声明。 文章目录 前言一、常见用法1.消息可靠性2.持久化机制3.消息积压批量消费:增加 prefetch 的数量,提高单次连接的消息数并发消费:…

门诊病历系统教程,社区诊所电子处方系统软件操作教程

一、软件程序问答 门诊病历系统教程,社区诊所电子处方系统软件操作教程 1、电子处方软件在开处方时候,可以一键导入模板吗? 如下图,软件以 佳易王诊所电子处方软件V17.1为例说明 软件右侧点击 配方模板,只需输入症…

从零开始学Python系列课程第17课:容器型数据类型之列表(上)

前言 列表算是 Python 中比较常用的一种容器型数据类型,那么什么是列表,列表有什么样的作用致使它在 Python 中这么受欢迎呢?这便是接下来我们要一起讨论的问题。 在不久之前我们讲过变量,我们将数据使用变量保存,但是…

08.哲说建造者模式(Builder Pattern)

“The odds that we’re in ‘base reality’ is one in billions.” —— Elon Musk 这段话出自马斯克在2016年的一次演讲,“人类活在真实世界的几率,可能不到十亿分之一”。此言一出,可谓一石激起千层浪。有人嘲讽马斯克是“语不惊人死不休…

[2024] 十大免费电脑数据恢复软件——轻松恢复电脑上已删除文件

哈喽大家好!你有没有需要适用于电脑的免费数据恢复软件呢?数据丢失可是个烦心事,无论是硬件故障还是软件损坏,甚至是意外删除、格式化或计算机病毒,都让人郁闷至极。当你遇到数据丢失的情况时,你一定希望能…

【Git】Git的基本操作

前言 Git是当前最主流的版本管理器,它可以控制电脑上的所有格式的文件。 它对于开发人员,可以管理项目中的源代码文档。(可以记录不同提交的修改细节,并且任意跳转版本) 本篇博客基于最近对Git的学习,简单介…

Python中的用户交互函数详解,提升用户体验!

更多Python学习内容:ipengtao.com 用户进行交互的Python应用程序,有许多常用的用户交互函数可以帮助创建更具吸引力和友好的用户界面。本文将介绍一些常用的Python用户交互函数,并提供详细的示例代码,以帮助大家更好地理解它们的用…