【flink番外篇】9、Flink Table API 支持的操作示例(7)- 表的join操作(内联接、外联接以及联接自定义函数等)

Flink 系列文章

一、Flink 专栏

Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。

  • 1、Flink 部署系列
    本部分介绍Flink的部署、配置相关基础内容。

  • 2、Flink基础系列
    本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。

  • 3、Flik Table API和SQL基础系列
    本部分介绍Flink Table Api和SQL的基本用法,比如Table API和SQL创建库、表用法、查询、窗口函数、catalog等等内容。

  • 4、Flik Table API和SQL提高与应用系列
    本部分是table api 和sql的应用部分,和实际的生产应用联系更为密切,以及有一定开发难度的内容。

  • 5、Flink 监控系列
    本部分和实际的运维、监控工作相关。

二、Flink 示例专栏

Flink 示例专栏是 Flink 专栏的辅助说明,一般不会介绍知识点的信息,更多的是提供一个一个可以具体使用的示例。本专栏不再分目录,通过链接即可看出介绍的内容。

两专栏的所有文章入口点击:Flink 系列文章汇总索引


文章目录

  • Flink 系列文章
  • 一、maven依赖
  • 二、示例:表的join操作(内联接、外联接以及联接自定义函数等)


本文介绍了表的join主要操作,比如内联接、外联接以及联接自定义函数等。

如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。

本文除了maven依赖外,没有其他依赖。

本文更详细的内容可参考文章:

17、Flink 之Table API: Table API 支持的操作(1)
17、Flink 之Table API: Table API 支持的操作(2)

本专题分为以下几篇文章:
【flink番外篇】9、Flink Table API 支持的操作示例(1)-通过Table API和SQL创建表
【flink番外篇】9、Flink Table API 支持的操作示例(2)- 通过Table API 和 SQL 创建视图
【flink番外篇】9、Flink Table API 支持的操作示例(3)- 通过API查询表和使用窗口函数的查询
【flink番外篇】9、Flink Table API 支持的操作示例(4)- Table API 对表的查询、过滤操作
【flink番外篇】9、Flink Table API 支持的操作示例(5)- 表的列操作
【flink番外篇】9、Flink Table API 支持的操作示例(6)- 表的聚合(group by、Distinct、GroupBy/Over Window Aggregation)操作
【flink番外篇】9、Flink Table API 支持的操作示例(7)- 表的join操作(内联接、外联接以及联接自定义函数等)
【flink番外篇】9、Flink Table API 支持的操作示例(8)- 时态表的join(scala版本)
【flink番外篇】9、Flink Table API 支持的操作示例(9)- 表的union、unionall、intersect、intersectall、minus、minusall和in的操作
【flink番外篇】9、Flink Table API 支持的操作示例(10)- 表的OrderBy、Offset 和 Fetch、insert操作
【flink番外篇】9、Flink Table API 支持的操作示例(11)- Group Windows(tumbling、sliding和session)操作
【flink番外篇】9、Flink Table API 支持的操作示例(12)- Over Windows(有界和无界的over window)操作
【flink番外篇】9、Flink Table API 支持的操作示例(13)- Row-based(map、flatmap、aggregate、group window aggregate等)操作
【flink番外篇】9、Flink Table API 支持的操作示例(14)- 时态表的join(java版本)
【flink番外篇】9、Flink Table API 支持的操作示例(1)-完整版
【flink番外篇】9、Flink Table API 支持的操作示例(2)-完整版

一、maven依赖

本文maven依赖参考文章:【flink番外篇】9、Flink Table API 支持的操作示例(1)-通过Table API和SQL创建表 中的依赖,为节省篇幅不再赘述。

二、示例:表的join操作(内联接、外联接以及联接自定义函数等)

本部分介绍了表的join主要操作,比如内联接、外联接以及联接自定义函数等。
关于自定义函数的联接将在flink 自定义函数中介绍,因为使用函数和联接本身关系不是非常密切。
19、Flink 的Table API 和 SQL 中的自定义函数(2)

import static org.apache.flink.table.api.Expressions.$;
import static org.apache.flink.table.api.Expressions.and;
import static org.apache.flink.table.api.Expressions.call;import java.util.Arrays;
import java.util.List;import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TableFunction;
import org.apache.flink.table.functions.TemporalTableFunction;
import org.apache.flink.types.Row;import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;/*** @author alanchan**/
public class TestTableAPIJoinOperationDemo {@Data@NoArgsConstructor@AllArgsConstructorpublic static class User {private long id;private String name;private double balance;private Long rowtime;}@Data@NoArgsConstructor@AllArgsConstructorpublic static class Order {private long id;private long user_id;private double amount;private Long rowtime;}final static List<User> userList = Arrays.asList(new User(1L, "alan", 18, 1698742358391L), new User(2L, "alan", 19, 1698742359396L), new User(3L, "alan", 25, 1698742360407L),new User(4L, "alanchan", 28, 1698742361409L), new User(5L, "alanchan", 29, 1698742362424L));final static List<Order> orderList = Arrays.asList(new Order(1L, 1, 18, 1698742358391L), new Order(2L, 2, 19, 1698742359396L), new Order(3L, 1, 25, 1698742360407L),new Order(4L, 3, 28, 1698742361409L), new Order(5L, 1, 29, 1698742362424L),new Order(6L, 4, 49, 1698742362424L));static void testInnerJoin() throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv = StreamTableEnvironment.create(env);DataStream<User> users = env.fromCollection(userList);Table usersTable = tenv.fromDataStream(users, $("id"), $("name"),$("balance"),$("rowtime"));DataStream<Order> orders = env.fromCollection(orderList);Table ordersTable = tenv.fromDataStream(orders, $("id"), $("user_id"), $("amount"),$("rowtime"));Table left = usersTable.select($("id").as("userId"), $("name"), $("balance"),$("rowtime").as("u_rowtime"));Table right = ordersTable.select($("id").as("orderId"), $("user_id"), $("amount"),$("rowtime").as("o_rowtime"));Table result = left.join(right).where($("user_id").isEqual($("userId"))).select($("orderId"), $("user_id"), $("amount"),$("o_rowtime"),$("name"),$("balance"));DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);resultDS.print();
//		15> (true,+I[4, 3, 28.0, 1698742361409, alan, 25])
//		12> (true,+I[1, 1, 18.0, 1698742358391, alan, 18])
//		3> (true,+I[6, 4, 49.0, 1698742362424, alanchan, 28])
//		12> (true,+I[2, 2, 19.0, 1698742359396, alan, 19])
//		12> (true,+I[3, 1, 25.0, 1698742360407, alan, 18])
//		12> (true,+I[5, 1, 29.0, 1698742362424, alan, 18])env.execute();}/*** 和 SQL LEFT/RIGHT/FULL OUTER JOIN 子句类似。 关联两张表。 两张表必须有不同的字段名,并且必须定义至少一个等式连接谓词。* @throws Exception*/static void testOuterJoin() throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv = StreamTableEnvironment.create(env);DataStream<User> users = env.fromCollection(userList);Table usersTable = tenv.fromDataStream(users, $("id"), $("name"),$("balance"),$("rowtime"));DataStream<Order> orders = env.fromCollection(orderList);Table ordersTable = tenv.fromDataStream(orders, $("id"), $("user_id"), $("amount"),$("rowtime"));Table left = usersTable.select($("id").as("userId"), $("name"), $("balance"),$("rowtime").as("u_rowtime"));Table right = ordersTable.select($("id").as("orderId"), $("user_id"), $("amount"),$("rowtime").as("o_rowtime"));Table leftOuterResult = left.leftOuterJoin(right, $("user_id").isEqual($("userId"))).select($("orderId"), $("user_id"), $("amount"),$("o_rowtime"),$("name"),$("balance"));DataStream<Tuple2<Boolean, Row>> leftOuterResultDS = tenv.toRetractStream(leftOuterResult, Row.class);
//		leftOuterResultDS.print();
//		12> (true,+I[null, null, null, null, alan, 18])
//		3> (true,+I[null, null, null, null, alanchan, 28])
//		12> (false,-D[null, null, null, null, alan, 18])
//		12> (true,+I[1, 1, 18.0, 1698742358391, alan, 18])
//		15> (true,+I[4, 3, 28.0, 1698742361409, alan, 25])
//		12> (true,+I[null, null, null, null, alan, 19])
//		3> (false,-D[null, null, null, null, alanchan, 28])
//		12> (false,-D[null, null, null, null, alan, 19])
//		3> (true,+I[6, 4, 49.0, 1698742362424, alanchan, 28])
//		12> (true,+I[2, 2, 19.0, 1698742359396, alan, 19])
//		12> (true,+I[3, 1, 25.0, 1698742360407, alan, 18])
//		3> (true,+I[null, null, null, null, alanchan, 29])
//		12> (true,+I[5, 1, 29.0, 1698742362424, alan, 18])Table rightOuterResult = left.rightOuterJoin(right, $("user_id").isEqual($("userId"))).select($("orderId"), $("user_id"), $("amount"),$("o_rowtime"),$("name"),$("balance"));DataStream<Tuple2<Boolean, Row>> rightOuterResultDS = tenv.toRetractStream(rightOuterResult, Row.class);
//		rightOuterResultDS.print();
//		12> (true,+I[1, 1, 18.0, 1698742358391, alan, 18])
//		3> (true,+I[6, 4, 49.0, 1698742362424, alanchan, 28])
//		15> (true,+I[4, 3, 28.0, 1698742361409, alan, 25])
//		12> (true,+I[2, 2, 19.0, 1698742359396, alan, 19])
//		12> (true,+I[3, 1, 25.0, 1698742360407, alan, 18])
//		12> (true,+I[5, 1, 29.0, 1698742362424, alan, 18])Table fullOuterResult = left.fullOuterJoin(right, $("user_id").isEqual($("userId"))).select($("orderId"), $("user_id"), $("amount"),$("o_rowtime"),$("name"),$("balance"));DataStream<Tuple2<Boolean, Row>> fullOuterResultDS = tenv.toRetractStream(fullOuterResult, Row.class);fullOuterResultDS.print();
//		3> (true,+I[6, 4, 49.0, 1698742362424, null, null])
//		12> (true,+I[1, 1, 18.0, 1698742358391, null, null])
//		15> (true,+I[4, 3, 28.0, 1698742361409, null, null])
//		12> (false,-D[1, 1, 18.0, 1698742358391, null, null])
//		3> (false,-D[6, 4, 49.0, 1698742362424, null, null])
//		12> (true,+I[1, 1, 18.0, 1698742358391, alan, 18])
//		3> (true,+I[6, 4, 49.0, 1698742362424, alanchan, 28])
//		3> (true,+I[null, null, null, null, alanchan, 29])
//		12> (true,+I[2, 2, 19.0, 1698742359396, null, null])
//		12> (false,-D[2, 2, 19.0, 1698742359396, null, null])
//		12> (true,+I[2, 2, 19.0, 1698742359396, alan, 19])
//		15> (false,-D[4, 3, 28.0, 1698742361409, null, null])
//		12> (true,+I[3, 1, 25.0, 1698742360407, alan, 18])
//		15> (true,+I[4, 3, 28.0, 1698742361409, alan, 25])
//		12> (true,+I[5, 1, 29.0, 1698742362424, alan, 18])env.execute();}/*** Interval join 是可以通过流模式处理的常规 join 的子集。* Interval join 至少需要一个 equi-join 谓词和一个限制双方时间界限的 join 条件。* 这种条件可以由两个合适的范围谓词(<、<=、>=、>)或一个比较两个输入表相同时间属性(即处理时间或事件时间)的等值谓词来定义。* @throws Exception*/static void testIntervalJoin() throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv = StreamTableEnvironment.create(env);DataStream<User> users = env.fromCollection(userList);Table usersTable = tenv.fromDataStream(users, $("id"), $("name"),$("balance"),$("rowtime"));DataStream<Order> orders = env.fromCollection(orderList);Table ordersTable = tenv.fromDataStream(orders, $("id"), $("user_id"), $("amount"),$("rowtime"));Table left = usersTable.select($("id").as("userId"), $("name"), $("balance"),$("rowtime").as("u_rowtime"));Table right = ordersTable.select($("id").as("orderId"), $("user_id"), $("amount"),$("rowtime").as("o_rowtime"));Table result = left.join(right).where(and($("user_id").isEqual($("userId")),$("user_id").isLess(3)
//					        $("u_rowtime").isGreaterOrEqual($("o_rowtime").minus(lit(5).minutes())),
//					        $("u_rowtime").isLess($("o_rowtime").plus(lit(10).minutes())))).select($("orderId"), $("user_id"), $("amount"),$("o_rowtime"),$("name"),$("balance"));result.printSchema();DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);resultDS.print();
//		12> (true,+I[1, 1, 18.0, 1698742358391, alan, 18.0])
//		12> (true,+I[2, 2, 19.0, 1698742359396, alan, 19.0])
//		12> (true,+I[3, 1, 25.0, 1698742360407, alan, 18.0])
//		12> (true,+I[5, 1, 29.0, 1698742362424, alan, 18.0])env.execute();}/*** join 表和表函数的结果。左(外部)表的每一行都会 join 表函数相应调用产生的所有行。 * 如果表函数调用返回空结果,则删除左侧(外部)表的一行。* 该示例为示例性的,具体的验证将在自定义函数中进行说明* * @throws Exception*/static void testInnerJoinWithUDTF() throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv = StreamTableEnvironment.create(env);// 注册 User-Defined Table FunctionTableFunction<Tuple3<String,String,String>> split = new SplitFunction();tenv.registerFunction("split", split);// joinDataStream<Order> orders = env.fromCollection(orderList);Table ordersTable = tenv.fromDataStream(orders, $("id"), $("user_id"), $("amount"),$("rowtime"));Table result = ordersTable.joinLateral(call("split", $("c")).as("s", "t", "v")).select($("a"), $("b"), $("s"), $("t"), $("v"));env.execute();}/*** join 表和表函数的结果。左(外部)表的每一行都会 join 表函数相应调用产生的所有行。* 如果表函数调用返回空结果,则保留相应的 outer(外部连接)行并用空值填充右侧结果。* 目前,表函数左外连接的谓词只能为空或字面(常量)真。* 该示例为示例性的,具体的验证将在自定义函数中进行说明* * @throws Exception*/static void testLeftOuterJoinWithUDTF() throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv = StreamTableEnvironment.create(env);// 注册 User-Defined Table FunctionTableFunction<Tuple3<String,String,String>> split = new SplitFunction();tenv.registerFunction("split", split);// joinDataStream<Order> orders = env.fromCollection(orderList);Table ordersTable = tenv.fromDataStream(orders, $("id"), $("user_id"), $("amount"),$("rowtime"));Table result = ordersTable.leftOuterJoinLateral(call("split", $("c")).as("s", "t", "v")).select($("a"), $("b"), $("s"), $("t"), $("v"));env.execute();}/*** Temporal table 是跟踪随时间变化的表。* Temporal table 函数提供对特定时间点 temporal table 状态的访问。* 表与 temporal table 函数进行 join 的语法和使用表函数进行 inner join 的语法相同。* 目前仅支持与 temporal table 的 inner join。* * @throws Exception*/static void testJoinWithTemporalTable() throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();StreamTableEnvironment tenv = StreamTableEnvironment.create(env);Table ratesHistory = tenv.from("RatesHistory");// 注册带有时间属性和主键的 temporal table functionTemporalTableFunction rates = ratesHistory.createTemporalTableFunction($("r_proctime"),$("r_currency"));tenv.registerFunction("rates", rates);// 基于时间属性和键与“Orders”表关联Table orders = tenv.from("Orders");Table result = orders.joinLateral(call("rates", $("o_proctime")), $("o_currency").isEqual($("r_currency")));env.execute();}/*** @param args* @throws Exception */public static void main(String[] args) throws Exception {
//		testInnerJoin();
//		testOuterJoin();
//		testIntervalJoin();testInnerJoinWithUDTF();}static class SplitFunction extends TableFunction<Tuple3<String,String,String>>{public void eval(Tuple3<String,String,String> tp) {//		    for (String s : str.split(",")) {
//		      // use collect(...) to emit a rowcollect(Row.of(s, s.length()));
//		    }}}
}

以上,本文介绍了表的join主要操作,比如内联接、外联接以及联接自定义函数等。

如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。

本文更详细的内容可参考文章:

17、Flink 之Table API: Table API 支持的操作(1)
17、Flink 之Table API: Table API 支持的操作(2)

本专题分为以下几篇文章:
【flink番外篇】9、Flink Table API 支持的操作示例(1)-通过Table API和SQL创建表
【flink番外篇】9、Flink Table API 支持的操作示例(2)- 通过Table API 和 SQL 创建视图
【flink番外篇】9、Flink Table API 支持的操作示例(3)- 通过API查询表和使用窗口函数的查询
【flink番外篇】9、Flink Table API 支持的操作示例(4)- Table API 对表的查询、过滤操作
【flink番外篇】9、Flink Table API 支持的操作示例(5)- 表的列操作
【flink番外篇】9、Flink Table API 支持的操作示例(6)- 表的聚合(group by、Distinct、GroupBy/Over Window Aggregation)操作
【flink番外篇】9、Flink Table API 支持的操作示例(7)- 表的join操作(内联接、外联接以及联接自定义函数等)
【flink番外篇】9、Flink Table API 支持的操作示例(8)- 时态表的join(scala版本)
【flink番外篇】9、Flink Table API 支持的操作示例(9)- 表的union、unionall、intersect、intersectall、minus、minusall和in的操作
【flink番外篇】9、Flink Table API 支持的操作示例(10)- 表的OrderBy、Offset 和 Fetch、insert操作
【flink番外篇】9、Flink Table API 支持的操作示例(11)- Group Windows(tumbling、sliding和session)操作
【flink番外篇】9、Flink Table API 支持的操作示例(12)- Over Windows(有界和无界的over window)操作
【flink番外篇】9、Flink Table API 支持的操作示例(13)- Row-based(map、flatmap、aggregate、group window aggregate等)操作
【flink番外篇】9、Flink Table API 支持的操作示例(14)- 时态表的join(java版本)
【flink番外篇】9、Flink Table API 支持的操作示例(1)-完整版
【flink番外篇】9、Flink Table API 支持的操作示例(2)-完整版

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/585873.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】线程池设计/单例模式/STL、智能指针与线程安全/读者写者问题

文章目录 一、线程池二、线程安全的单例模式1.单例模式的特点2.饿汉实现方式和懒汉实现方式3.懒汉方式实现单例模式(线程安全版本) 三、STL,智能指针和线程安全四、常见的各种锁五、读者写者问题1.读写锁2.读写锁接口 一、线程池 线程池:一种线程使用模式。线程过多会带来调度…

2023年高级软考系统架构师考题参考

对于一些有实践经验的同学来说&#xff0c;感觉不难&#xff0c;但是落笔到纸面上&#xff0c;就差强人意了&#xff0c;平时这方面要多练习&#xff0c;所想所思要落到纸面上&#xff0c;或者表达清晰让别人听懂&#xff0c;不仅是工作中的一个基本素质&#xff0c;也是个非常…

【数学建模美赛M奖速成系列】Matplotlib绘图技巧(三)

Matplotlib绘图技巧&#xff08;三&#xff09; 写在前面7. 雷达图7.1 圆形雷达图7.2 多边形雷达图 8. 极坐标图 subplot9. 折线图 plot10. 灰度图 meshgrid11. 热力图11.1 自定义colormap 12. 箱线图 boxplot 写在前面 终于更新完Matplotlib绘图技巧的全部内容&#xff0c;有…

web漏洞与修复

一、web漏洞 检测到目标X-Content-Type-Options响应头缺失 详细描述X-Content-Type-Options HTTP 消息头相当于一个提示标志&#xff0c;被服务器用来提示客户端一定要遵循在 Content-Type 首部中对 MIME 类型 的设定&#xff0c;而不能对其进行修改。这就禁用了客户端的 MIM…

python合并多个PDF,成为1个PDF

这里我们使用PyPDF2 库进行操作 合并的步骤如下&#xff1a; 创建PdfMerger使用append()添加多个pdf文件最后write()出即可 示例程序 将多个pdf_data/目录下的pdf文件合并成1个pdf文件的程序如下&#xff1a; from PyPDF2 import PdfMergerfile_merger PdfMerger() # 创…

面试题:从 MySQL 读取 100w 数据进行处理,应该怎么做?

文章目录 背景常规查询流式查询MyBatis 流式查询接口为什么要用流式查询&#xff1f; 游标查询OptionsResultType注意&#xff1a;原因&#xff1a; 非流式查询和流式查询区别&#xff1a; 背景 大数据量操作的场景大致如下&#xff1a; 数据迁移数据导出批量处理数据 在实际…

跨境电商:让中国制造走向世界

跨境电商的崛起 跨境电商是指不同国家和地区之间的商业交易&#xff0c;通过互联网和物流等方式完成。随着全球化和互联网的普及&#xff0c;跨境电商迅速崛起&#xff0c;成为全球贸易的重要组成部分。中国作为全球最大的制造业国家&#xff0c;拥有着丰富的商品资源和供应链…

链表总结(2)

theme: fancy 又是链表专题啦&#xff0c;老样子&#xff0c;标题就是leetcode链接&#xff0c;在这里只放我的代码答案和注释 141环形链表 public class Solution {public boolean hasCycle(ListNode head) {if(head null || head.next null) return false;if(head.nex…

详解FreeRTOS:FreeRTOSConfig.h系统配置文件(拓展篇—1)

目录 1、“INCLUDE_”宏 2、“config”宏 实际使用FreeRTOS的时候,时常需要根据自己需求来配置 FreeRTOS,不同架构的MCU,配置也不同。 FreeRTOS的系统配置文件为FreeRTOSConfig.h,在配置文件中可以完成FreeRTOS的裁剪和配置,这是非常重要的一个文件,本篇博文就来讲解这…

鸿蒙HarmonyOS-带笔锋手写板(三)

笔者用ArkTS 写了一个简单的带笔锋的手写板应用&#xff0c;并且可以将手写内容保存为图片。 一、效果图 手写效果如下&#xff08;在鸿蒙手机模拟器上运行&#xff0c;手写时反应可能会有点慢&#xff09; 二、实现方法 参考文章&#xff1a; 支持笔锋效果的手写签字控件_a…

【PHP】二维数组转一维数组

在 PHP 中&#xff0c;如果你想将一个二维数组转换为一维数组&#xff0c;你可以使用几种不同的方法。以下是一些常见的方法&#xff1a; 1.使用 array_column() 函数 $data [[id > 1, ci > A],[id > 2, ci > B],[id > 3, ci > C],[id > 4, ci > D],…

Shell脚本-bin/bash: 解释器错误: 没有那个文件或目录-完整路径执行-“/”引发的脑裂

引起该不适的一种可能以及解决方案&#xff0c;网上较多&#xff0c;比如&#xff1a; 但按以上方式操作&#xff0c;并经过查看&#xff0c;发现仍然未能解决问题。 因为两种方式执行&#xff0c;有一种能成功&#xff0c;有一种不能&#xff0c;刚开始未怀疑是文件问题&…

LeetCode75| 二叉搜索树

目录 700 二叉搜索树中的搜索 迭代 递归 450 删除二叉搜索树中的节点 700 二叉搜索树中的搜索 注意二叉搜索树的性质即可 迭代 class Solution { public:TreeNode* searchBST(TreeNode* root, int val) {while(root ! NULL){if(root->val < val)root root->r…

hive高级查询(2)

-- 分组查询 SELECT sex,SUM(mark) sum_mark FROM score GROUP BY sex HAVING sum_mark > 555; SELECT sex,sum_mark FROM( SELECT sex,SUM(mark) sum_mark FROM score GROUP BY sex ) t WHERE sum_mark > 555; SELECT AVG(gid),SUM(gid)/COUNT(gid) FROM …

宠物救助上门喂养系统宠物领养宠物寄养寻宠小程序宠物社区系统宠物托运宠物殡葬源码

后端php 前端uniapp mysql数据库 主要功能介绍&#xff1a; 1.根据当前位置 支持多城市切换 2.支持首页公告实时显示 3.支持 宠物救助&#xff0c;上门喂养&#xff0c;宠物领养&#xff0c;宠物寄养&#xff0c;寻宠&#xff0c;宠物社区&#xff0c;宠物托运&#xff…

【node-express】在commonjs的项目中使用esm和ts开发的sdk

在commonjs的项目中使用esm和ts开发的sdk 效果实现步骤 效果 在一些demo中, 大部分代码是commonjs规范开发的&#xff0c;但是要用到的sdk是ts开发的并且仅支持esm&#xff0c; 又不想配置很复杂的工程项目&#xff0c;可以这么做。如果你有更好的建议&#xff0c;希望能得到你…

学习笔记13——Spring整合Mybatis、junit、AOP、事务

学习笔记系列开头惯例发布一些寻亲消息 链接&#xff1a;https://baobeihuijia.com/bbhj/ Mybatis - Spring&#xff08;使用第三方包new一个对象bean&#xff09; 原始的Mybatis与数据库交互【通过sqlmapconfig来配置和连接】 初始化SqlSessionFactory获得连接获取数据层接口…

SQLServer性能分析--执行计划、耗时SQL排查和死锁处理

目录 1 常用系统存储过程2 查看执行计划3 查看磁盘使用率&#xff08;STATISTICS IO&#xff09;4 查询时间耗时较长的语句5 死锁处理参考资料 1 常用系统存储过程 1.1 查询表结构 EXEC sp_columns your_table, column_name table_column1.2 查询表索引 EXEC sp_helpindex …

FairyGUI-Cocos Creator官方Demo源码解读

博主在学习Cocos Creator的时候&#xff0c;发现了一款免费的UI编辑器FairyGUI。这款编辑器的能力十分强大&#xff0c;但是网上的学习资源比较少&#xff0c;坑比较多&#xff0c;主要学习方式就是阅读官方文档和练习官方Demo。这里博主进行官方Demo的解读。 从gitee上克隆项目…

超实用!CSDN个人数据Chrome插件开发

插件简介 相信写过博客的都知道&#xff0c;每天会经常打开自己的主页无数次&#xff0c;尤其是写了一篇新文章&#xff0c;就为了看文章浏览量增长了多少&#xff0c;文章获得了多少个赞&#xff0c;有多少人评论&#xff08;谁不想自己写的文章成为爆款呢&#xff5e;&#…