事实验证文章分类 Papers Category For Fact Checking

事实验证文章分类 Papers Category For Fact Checking

By 2023.11

个人根据自己的观点花了很多时间整理的一些关于事实验证领域证据召回,验证推理过程的文献综合整理分类(不是很严谨)。

引用请注明出处

欢迎从事事实验证Fact Checking领域的友友们前来交流,讨论。可以私信我,也可以评论我,我都会看到滴,欢迎有合作意愿的朋友们!
欢迎从事事实验证Fact Checking领域的友友们前来交流,讨论。可以私信我,也可以评论我,我都会看到滴,欢迎有合作意愿的朋友们!
欢迎从事事实验证Fact Checking领域的友友们前来交流,讨论。可以私信我,也可以评论我,我都会看到滴,欢迎有合作意愿的朋友们!

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

以上所有图片中标记的参考文献见下:

[1] Ou S, Liu Y. Learning to Generate Programs for Table Fact Verification via Structure-Aware Semantic Parsing[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022: 7624-7638.
[2] Yang Z, Ma J, Chen H, et al. A Coarse-to-fine Cascaded Evidence-Distillation Neural Network for Explainable Fake News Detection[J]. arXiv preprint arXiv:2209.14642, 2022.
[3] Kruengkrai C, Yamagishi J, Wang X. A multi-level attention model for evidence-based fact checking[J]. arXiv preprint arXiv:2106.00950, 2021.
[4] Li X, Burns G A, Peng N. A Paragraph-level Multi-task Learning Model for Scientific Fact-Verification[C]//SDU@ AAAI. 2021.
[5] Zeng X, Zubiaga A. Aggregating Pairwise Semantic Differences for Few-Shot Claim Veracity Classification[J]. arXiv preprint arXiv:2205.05646, 2022.
[6] Glockner M, Staliūnaitė I, Thorne J, et al. AmbiFC: Fact-Checking Ambiguous Claims with Evidence[J]. arXiv e-prints, 2021: arXiv: 2104.00640.
[7] Chamoun E, Saeidi M, Vlachos A. Automated Fact-Checking in Dialogue: Are Specialized Models Needed?[J]. arXiv preprint arXiv:2311.08195, 2023.
[8] Schlichtkrull M, Guo Z, Vlachos A. AVeriTeC: A dataset for real-world claim verification with evidence from the web[J]. arXiv e-prints, 2023: arXiv: 2305.13117.
[9] Soleimani A, Monz C, Worring M. Bert for evidence retrieval and claim verification[C]//Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part II 42. Springer International Publishing, 2020: 359-366.
[10] DeHaven M, Scott S. BEVERS: A General, Simple, and Performant Framework for Automatic Fact Verification[J]. arXiv preprint arXiv:2303.16974, 2023.
[11] Wang G, Harwood K, Chillrud L, et al. Check-COVID: Fact-Checking COVID-19 News Claims with Scientific Evidence[J]. arXiv preprint arXiv:2305.18265, 2023.
[12] Hu X, Guo Z, Wu G, et al. CHEF: A Pilot Chinese Dataset for Evidence-Based Fact-Checking[J]. arXiv preprint arXiv:2206.11863, 2022.
[13] Ko M, Seong I, Lee H, et al. ClaimDiff: Comparing and Contrasting Claims on Contentious Issues[C]//Findings of the Association for Computational Linguistics: ACL 2023. 2023: 4711-4731.
[14] Funkquist M. Combining sentence and table evidence to predict veracity of factual claims using TaPaS and RoBERTa[C]//Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER). 2021: 92-100.
[15] Huang K H, Zhai C X, Ji H. CONCRETE: Improving Cross-lingual Fact-checking with Cross-lingual Retrieval[J]. arXiv preprint arXiv:2209.02071, 2022.
[16] Si J, Zhu Y, Zhou D. Consistent Multi-Granular Rationale Extraction for Explainable Multi-hop Fact Verification[J]. arXiv preprint arXiv:2305.09400, 2023.
[17] Saakyan A, Chakrabarty T, Muresan S. COVID-fact: Fact extraction and verification of real-world claims on COVID-19 pandemic[J]. arXiv preprint arXiv:2106.03794, 2021.
[18] Gupta P, Wu C S, Liu W, et al. DialFact: A benchmark for fact-checking in dialogue[J]. arXiv preprint arXiv:2110.08222, 2021.
[19] Hu N, Wu Z, Lai Y, et al. Dual-channel evidence fusion for fact verification over texts and tables[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2022: 5232-5242.
[20] Yao B M, Shah A, Sun L, et al. End-to-end multimodal fact-checking and explanation generation: A challenging dataset and models[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2023: 2733-2743.
[21] Xu W, Wu J, Liu Q, et al. Evidence-aware fake news detection with graph neural networks[C]//Proceedings of the ACM Web Conference 2022. 2022: 2501-2510.
[22] Sarrouti M, Abacha A B, M’rabet Y, et al. Evidence-based fact-checking of health-related claims[C]//Findings of the Association for Computational Linguistics: EMNLP 2021. 2021: 3499-3512.
[23] Chen Z, Hui S C, Zhuang F, et al. EvidenceNet: Evidence Fusion Network for Fact Verification[C]//Proceedings of the ACM Web Conference 2022. 2022: 2636-2645.
[24] Ma H, Xu W, Wei Y, et al. EX-FEVER: A Dataset for Multi-hop Explainable Fact Verification[J]. arXiv preprint arXiv:2310.09754, 2023.
[25] Yang J, Vega-Oliveros D, Seibt T, et al. Explainable fact-checking through question answering[C]//ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022: 8952-8956.
[26] Jiang K, Pradeep R, Lin J. Exploring listwise evidence reasoning with t5 for fact verification[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). 2021: 402-410.[27]
[28] Bouziane M, Perrin H, Sadeq A, et al. FaBULOUS: Fact-checking Based on Understanding of Language Over Unstructured and Structured information[C]//Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER). 2021: 31-39.
[29] Wadden D, Lin S, Lo K, et al. Fact or fiction: Verifying scientific claims[J]. arXiv preprint arXiv:2004.14974, 2020.
[30] Pan L, Wu X, Lu X, et al. Fact-Checking Complex Claims with Program-Guided Reasoning[J]. arXiv preprint arXiv:2305.12744, 2023.
[31] Rani A, Tonmoy S M, Dalal D, et al. FACTIFY-5WQA: 5W Aspect-based Fact Verification through Question Answering[J]. arXiv preprint arXiv:2305.04329, 2023.
[32] Kim J, Park S, Kwon Y, et al. FactKG: Fact Verification via Reasoning on Knowledge Graphs[J]. arXiv preprint arXiv:2305.06590, 2023.
[33] Cheung T H, Lam K M. FactLLaMA: Optimizing Instruction-Following Language Models with External Knowledge for Automated Fact-Checking[J]. arXiv preprint arXiv:2309.00240, 2023.
[34] Park J, Min S, Kang J, et al. FAVIQ: FAct Verification from Information-seeking Questions[J]. arXiv preprint arXiv:2107.02153, 2021.
[35] Aly R, Guo Z, Schlichtkrull M, et al. FEVEROUS: Fact extraction and VERification over unstructured and structured information[J]. arXiv preprint arXiv:2106.05707, 2021.
[36] Rangapur A, Wang H, Shu K. Fin-Fact: A Benchmark Dataset for Multimodal Financial Fact Checking and Explanation Generation[J]. arXiv preprint arXiv:2309.08793, 2023.
[37] Liu Z, Xiong C, Sun M, et al. Fine-grained fact verification with kernel graph attention network[J]. arXiv preprint arXiv:1910.09796, 2019.
[38] Zhou J, Han X, Yang C, et al. GEAR: Graph-based evidence aggregating and reasoning for fact verification[J]. arXiv preprint arXiv:1908.01843, 2019.
[39] Fan A, Piktus A, Petroni F, et al. Generating fact checking briefs[J]. arXiv preprint arXiv:2011.05448, 2020.
[40] Chen J, Sriram A, Choi E, et al. Generating literal and implied subquestions to fact-check complex claims[J]. arXiv preprint arXiv:2205.06938, 2022.
[41] Chen J, Zhang R, Guo J, et al. GERE: Generative evidence retrieval for fact verification[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2022: 2184-2189.
[42] Hu X, Guo Z, Wu G, et al. Give Me More Details: Improving Fact-Checking with Latent Retrieval[J]. arXiv preprint arXiv:2305.16128, 2023.
[43] Kotonya N, Spooner T, Magazzeni D, et al. Graph reasoning with context-aware linearization for interpretable fact extraction and verification[J]. arXiv preprint arXiv:2109.12349, 2021.
[44] Lin H, Fu X. Heterogeneous-Graph Reasoning and Fine-Grained Aggregation for Fact Checking[C]//Proceedings of the Fifth Fact Extraction and VERification Workshop (FEVER). 2022: 6-15.
[45] Subramanian S, Lee K. Hierarchical evidence set modeling for automated fact extraction and verification[J]. arXiv preprint arXiv:2010.05111, 2020.
[46] Wang H, Li Y, Huang Z, et al. IMCI: Integrate Multi-view Contextual Information for Fact Extraction and Verification[J]. arXiv preprint arXiv:2208.14001, 2022.
[47] Allein L, Saelens M, Cartuyvels R, et al. Implicit Temporal Reasoning for Evidence-Based Fact-Checking[J]. arXiv preprint arXiv:2302.12569, 2023.
[48] Ou S, Liu Y. Learning to Generate Programs for Table Fact Verification via Structure-Aware Semantic Parsing[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022: 7624-7638.
[49] Jin Z, Lalwani A, Vaidhya T, et al. Logical fallacy detection[J]. arXiv preprint arXiv:2202.13758, 2022.
[50] Chen J, Bao Q, Sun C, et al. Loren: Logic-regularized reasoning for interpretable fact verification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2022, 36(10): 10482-10491.
[51] Liu Y, Zhu C, Zeng M. Modeling Entity Knowledge for Fact Verification[C]//Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER). 2021: 50-59.
[52] Wadden D, Lo K, Wang L L, et al. MultiVerS: Improving scientific claim verification with weak supervision and full-document context[J]. arXiv preprint arXiv:2112.01640, 2021.
[53] Saeed M, Alfarano G, Nguyen K, et al. Neural re-rankers for evidence retrieval in the FEVEROUS task[C]//Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER). 2021: 108-112.
[54] Zeng F, Gao W. Prompt to be Consistent is Better than Self-Consistent? Few-Shot and Zero-Shot Fact Verification with Pre-trained Language Models[J]. arXiv preprint arXiv:2306.02569, 2023.
[55] Pan L, Lu X, Kan M Y, et al. QACHECK: A Demonstration System for Question-Guided Multi-Hop Fact-Checking[J]. arXiv preprint arXiv:2310.07609, 2023.
[56] Hu X, Hong Z, Guo Z, et al. Read it Twice: Towards Faithfully Interpretable Fact Verification by Revisiting Evidence[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2023: 2319-2323.
[57] Zhong W, Xu J, Tang D, et al. Reasoning over semantic-level graph for fact checking[J]. arXiv preprint arXiv:1909.03745, 2019.
[58] Nikopensius G, Mayank M, Phukan O C, et al. Reinforcement learning-based knowledge graph reasoning for explainable fact-checking[J]. arXiv preprint arXiv:2310.07613, 2023.
[59] Rakotoson L, Letaillieur C, Massip S, et al. Science Checker: Extractive-Boolean Question Answering For Scientific Fact Checking[J]. arXiv preprint arXiv:2204.12263, 2022.
[60] Vladika J, Matthes F. Scientific Fact-Checking: A Survey of Resources and Approaches[J]. arXiv preprint arXiv:2305.16859, 2023.
[61] Wadden D, Lo K, Kuehl B, et al. SciFact-open: Towards open-domain scientific claim verification[J]. arXiv preprint arXiv:2210.13777, 2022.
[62] Li M, Peng B, Zhang Z. Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models[J]. arXiv preprint arXiv:2305.14623, 2023.
[63] Chen W, Wang H, Chen J, et al. Tabfact: A large-scale dataset for table-based fact verification[J]. arXiv preprint arXiv:1909.02164, 2019.
[64] Zhou Y, Liu X, Zhou K, et al. Table-based fact verification with self-adaptive mixture of experts[J]. arXiv preprint arXiv:2204.08753, 2022.
[65] Malon C. Team papelo at FEVEROUS: Multi-hop evidence pursuit[C]//Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER). 2021: 40-49.
[66] Si J, Zhou D, Li T, et al. Topic-aware evidence reasoning and stance-aware aggregation for fact verification[J]. arXiv preprint arXiv:2106.01191, 2021.
[67] Lee N, Bang Y, Madotto A, et al. Towards few-shot fact-checking via perplexity[J]. arXiv preprint arXiv:2103.09535, 2021.
[68] Bazaga A, Liò P, Micklem G. Unsupervised Fact Verification by Language Model Distillation[J]. arXiv preprint arXiv:2309.16540, 2023.
[69] Ousidhoum N, Yuan Z, Vlachos A. Varifocal Question Generation for Fact-checking[J]. arXiv preprint arXiv:2210.12400, 2022.
[70] Gi I Z, Fang T Y, Tsai R T H. Verdict Inference with Claim and Retrieved Elements Using RoBERTa[C]//Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER). 2021: 60-65.
[71] Khan K, Wang R, Poupart P. WatClaimCheck: A new dataset for claim entailment and inference[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022: 1293-1304.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/585834.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TypeScript源码中的一个很有意思的简写

在读TypeScript源码时,发现一个很有意思的简写 : return scriptInfo ? scriptInfo.getDefaultProject() : (this.logErrorForScriptInfoNotFound(isString(fileNameOrScriptInfo) ? fileNameOrScriptInfo : fileNameOrScript…

挑战Python100题(6)

100 Python challenging programming exercises 6 Question 51 Define a class named American and its subclass NewYorker. Hints: Use class Subclass(ParentClass) to define a subclass. 定义一个名为American的类及其子类NewYorker。 提示:使用class Subcla…

【史上最细教程】1台服务器部署2台MongoDB实例

文章目录 【史上最全教程】1台服务器部署2台MongoDB实例1.下载解压安装包2.配置系统环境变量3.创建实例27017扩展内容(可跳过) 4.配置安全组、防火墙5.可视化工具连接问题1:not authorized on admin to execute command 【史上最全教程】1台服务器部署2台MongoDB实例…

Flink(十一)【状态管理】

Flink 状态管理 我们一直称 Flink 为运行在数据流上的有状态计算框架和处理引擎。在之前的章节中也已经多次提到了“状态”(state),不论是简单聚合、窗口聚合,还是处理函数的应用,都会有状态的身影出现。状态就如同事务…

Java日期工具类LocalDate

Java日期工具类LocalDate 嘚吧嘚java.util.DateJava8新增日期类时区 LocalDate - API创建日期获取年月日修改年月日日期比较 嘚吧嘚 java.util.Date 在Java8之前通常会使用Date结合SimpleDateFormat、Calender来处理时间和日期的相关需求。 1、可读性差、易用性差、使用起来冗…

C#的checked关键字判断是否溢出

目录 一、定义 二、示例: 三、生成: 一、定义 使用checked关键字处理溢出。 在进行数学运算时,由于变量类型不同,数值的值域也有所不同。如果变量中的数值超出了变量的值域,则会出现溢出情况,出现溢出…

12.21自动售货机,单物品,多物品

自动售货机 if朴素方法 一种思路是用寄存器cnt记录已有的最小单位货币量,这里就是0.5 当d1时,cnt1;d2时,cnt2;d3时,cnt4; timescale 1ns/1ns module seller1(input wire clk ,input wire rst ,input wire d1 ,input wire d2 …

vue3 组件之间传值

vue3 组件之间传值 非常好,为啥突然开这样一篇博文,首先是因为 vue3 是未来发展的趋势。其次,vue 官方已经确认,将于2023年最后一天停止对 vue2 项目的维护,这个是官方发出的通知,并且呢,尤雨溪…

面试算法78:合并排序链表

题目 输入k个排序的链表,请将它们合并成一个排序的链表。 分析:利用最小堆选取值最小的节点 用k个指针分别指向这k个链表的头节点,每次从这k个节点中选取值最小的节点。然后将指向值最小的节点的指针向后移动一步,再比较k个指…

统信UOS及麒麟KYLINOS操作系统上设置GRUB密码

原文链接:给单用户模式上一层保险!!! hello,大家好啊!今天我要给大家介绍的是在统信UOS及麒麟KYLINOS操作系统上设置GRUB密码的方法。GRUB(GRand Unified Bootloader)是Linux系统中的…

利用F12和Fiddler抓包

网络基础 http 而http协议又分为下面的部分,点击具体条目后可以查看详细信息 http请求消息:请求行(请求方法),请求路径,请求头,请求体(载荷) http响应消息:响应行(响应状态码),响应头,响应体 请求行 即请求方法 get post put patch 响应行 即响应码,常见响应状态…

祖先是否安宁,直接关系到个人以及家运哦!

一直以来,中国古代流传下来的思想就认为,祖先安葬在好的风水福地,一定能给子孙后代带来吉祥如意。相反的,假如祖坟风水不好,则会影响到后人的运气,轻者诸事不顺、重者家庭破裂、噩运连连,所以&a…

【C++杂货铺】C++11新特性——lambda

文章目录 一、C98中的排序二、先来看看 lambda 表达式长什么样三、lambda表达式语法3.1 捕捉列表的使用细节 四、lambda 的底层原理五、结语 一、C98中的排序 在 C98 中,如果要对一个数据集合中的元素进行排序,可以使用 std::sort 方法,下面…

二叉树顺序结构与堆的概念及性质(c语言实现堆)

上次介绍了树,二叉树的基本概念结构及性质:二叉树数据结构:深入了解二叉树的概念、特性与结构 今天带来的是:二叉树顺序结构与堆的概念及性质,还会用c语言来实现堆 文章目录 1. 二叉树的顺序结构2.堆的概念和结构3.堆…

推荐几个开源HTTP服务接口快速生成工具

在现在流行微服务、前后端分离软件开发架构下,基于标准RESTful/JSON的HTTP接口已经成为主流。在实际业务中有很多需要快速开发调用数据服务接口的需求,但团队中缺乏专业的后端开发人员,比如: (1)数据库表已…

PHP开发日志 ━━ 基于PHP和JS的AES相互加密解密方法详解(CryptoJS) 适合CryptoJS4.0和PHP8.0

最近客户在做安全等保,需要后台登录密码采用加密方式,原来用个base64变形一下就算了,现在不行,一定要加密加key加盐~~ 前端使用Cypto-JS加密,传输给后端使用PHP解密,当然,前端虽然有key有盐&…

如何学习计算机编程?零基础入门,轻松成为编程达人!

在这个信息爆炸的时代,计算机编程已经成为一项炙手可热的技能。如果你也对编程充满兴趣,但又不知从何入手,那么本文将为你提供一条通往编程世界的捷径。掌握了这些技巧,相信你一定能够轻松成为编程达人! 一、选择合适…

lag-llama源码解读(Lag-Llama: Towards Foundation Models for Time Series Forecasting)

Lag-Llama: Towards Foundation Models for Time Series Forecasting 文章内容: 时间序列预测任务,单变量预测单变量,基于Llama大模型,在zero-shot场景下模型表现优异。创新点,引入滞后特征作为协变量来进行预测。 获得…

爬虫工作量由小到大的思维转变---<第三十五章 Scrapy 的scrapyd+Gerapy 部署爬虫项目>

前言: 项目框架没有问题大家布好了的话,接着我们就开始部署scrapy项目(没搭好架子的话,看我上文爬虫工作量由小到大的思维转变---<第三十四章 Scrapy 的部署scrapydGerapy>-CSDN博客) 正文: 1.创建主机: 首先gerapy的架子,就相当于部署服务器上的;所以…

Ubuntu 18.04搭建RISCV和QEMU环境

前言 因为公司项目代码需要在RISCV环境下测试,因为没有硬件实体,所以在Ubuntu 18.04上搭建了riscv-gnu-toolchain QEMU模拟器环境。 安装riscv-gnu-toolchain riscv-gnu-toolchain可以从GitHub上下载源码编译,地址为:https://…