Large-Precision Sign using PBS

参考文献:

  1. [CLOT21] Chillotti I, Ligier D, Orfila J B, et al. Improved programmable bootstrapping with larger precision and efficient arithmetic circuits for TFHE[C]//Advances in Cryptology–ASIACRYPT 2021: 27th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, December 6–10, 2021, Proceedings, Part III 27. Springer International Publishing, 2021: 670-699.
  2. [LMP22] Liu Z, Micciancio D, Polyakov Y. Large-precision homomorphic sign evaluation using FHEW/TFHE bootstrapping[C]//International Conference on the Theory and Application of Cryptology and Information Security. Cham: Springer Nature Switzerland, 2022: 130-160.

文章目录

  • Homomorphic Floor Function
    • Using 2 PBS
    • Using 3 PBS
  • PBS of Arbitrary Function
  • Homomorphic Digit Decomposition
  • Parameter Selection

[CLOT21] 提出了 WoP-PBS,它基于事实 ( − 1 ) ⋅ ( − m ) = m (-1) \cdot (-m)=m (1)(m)=m,先将 m m m 扩展为 β ∥ m \beta\|m βm,然后使用 GenPBS 分别计算出 ( − 1 ) β ⋅ f ( m ) (-1)^\beta \cdot f(m) (1)βf(m) ( − 1 ) β (-1)^\beta (1)β,最后使用 FV-like 同态乘法,将它们组合成 f ( m ) f(m) f(m)。这需要底层的 LWE 同时支持加法和乘法,并且同态乘法导致了噪声增长。因此,模数(正确性)和维度(安全性)都会相应的变大,导致它比一般的 FHEW/TFHE 的效率更至少一倍。

[LMP22] 也是将 m m m 扩展到 β ∥ m \beta\|m βm,单它首先将 β \beta β 消除掉使之成为 0 ∥ m 0\|m 0∥m,接着使用原始的 PBS 就可以计算出正确的 f ( m ) f(m) f(m)。在这个过程中,并不需要使用同态乘法,因此它的噪声就是 PBS 本身的噪声,常规的参数就足够使用。

Homomorphic Floor Function

首先,[LMP22] 研究了如何对于高精度 LWE 密文执行自举。这里的 “精度” 指的是 MSD 编码的消息的比特长度。我们先给出一些参数定义:

  • LWE:
    • 维度 n n n,不需要是二的幂
    • 模数 Q Q Q,是二的幂,用于 LWE 同态运算
    • 模数 q q q,是二的幂,用于 PBS 自举
    • 缩放因子 α \alpha α,是二的幂,用于纠错
    • 噪声界 β \beta β,是二的幂
  • ACC:
    • 多项式长度 N N N,是二的幂
    • RLWE 密文模数 Q ′ Q' Q,是满足 2 N ∣ Q ′ − 1 2N \mid Q'-1 2NQ1 的素数
    • 输入 LWE 密文模数 q ∣ 2 N q \mid 2N q2N
    • 输出 LWE 密文模数 Q Q Q

FHEW/TFHE 要求 LWE 的密文模数满足 Q ∣ 2 N Q \mid 2N Q2N,随着明文精度的增加( k k k 比特),多项式长度 N N N 指数级增加( 2 k 2^k 2k 倍)。对于通常的参数集 N = 1024 / 2048 N=1024/2048 N=1024/2048,只能支持至多 3 , 4 3,4 3,4 比特的明文精度。[LMP22] 为了计算高精度的 Sign 函数,通过不断移除 LSD(保持 MSB 不变),直到密文模数 Q Q Q 倍缩减到 q q q 规模,从而可以使用常规参数集执行 PBS。

这个过程中,一个关键步骤是同态 Floor 函数。假设 LWE 密文 ( c , d ) ∈ Z Q n + 1 (c,d) \in \mathbb Z_Q^{n+1} (c,d)ZQn+1 的相位是:
ψ = α ⋅ m + e ( m o d Q ) \psi = \alpha \cdot m + e \pmod Q ψ=αm+e(modQ)
其中 ∣ e ∣ ≤ β ≪ q |e| \le \beta \ll q eβq m ∈ Z Q / α m \in \mathbb Z_{Q/\alpha} mZQ/α,根据不同的场景 α \alpha α 选取不同的值。

注意到 Q > q > α Q>q>\alpha Q>q>α 都是二的幂次。如果我们将 LWE 密文模掉 q q q,获得的 ( a , b ) ∈ Z q n + 1 (a,b) \in \mathbb Z_q^{n+1} (a,b)Zqn+1
[ m ′ ] q = α ⋅ [ m ] q / α + e ( m o d q ) [m']_q = \alpha \cdot [m]_{q/\alpha} + e \pmod q [m]q=α[m]q/α+e(modq)
使用 PBS 将它提升回 ( a ′ , b ′ ) ∈ Z Q n + 1 (a',b') \in \mathbb Z_Q^{n+1} (a,b)ZQn+1,并从原始密文中把它减掉,就清除了 m m m 的最低 log ⁡ q / α \log{q/\alpha} logq/α 比特。密文 ( c ′ , d ′ ) (c',d') (c,d) 的相位是:
ψ ′ = α ⋅ ( ⌊ α q m ⌋ ⋅ q α ) + e ′ ( m o d Q ) \psi' = \alpha \cdot \left(\left\lfloor \frac{\alpha}{q} m \right\rfloor \cdot \frac{q}{\alpha} \right) + e' \pmod Q ψ=α(qαmαq)+e(modQ)
现在,我们可以把 α , Q \alpha,Q α,Q 同时缩小 q / α q/\alpha q/α 倍,得到的密文 ( c ′ ′ , d ′ ′ ) ∈ Z ( α / q ) ⋅ Q n + 1 (c'',d'') \in \mathbb Z_{(\alpha/q) \cdot Q}^{n+1} (c′′,d′′)Z(α/q)Qn+1 相位的 MSB 保持和 ( c , d ) ∈ Z Q n + 1 (c,d) \in \mathbb Z_Q^{n+1} (c,d)ZQn+1 的一样。

我们将这个长度 log ⁡ ( q / α ) \log(q/\alpha) log(q/α) 的小块明文称为 LSD,我们的目标是将它清零。然而,函数 f : m ∈ Z q / α ↦ m ∈ Z Q / α f:m \in \mathbb Z_{q/\alpha} \mapsto m \in \mathbb Z_{Q/\alpha} f:mZq/αmZQ/α 并非反循环的,导致了原始的 PBS 无法实现从 ( a , b ) (a,b) (a,b) ( a ′ , b ′ ) (a',b') (a,b) 的自举过程。[LMP22] 给出了两种实现,通过 2 , 3 2,3 2,3 次 PBS 来实现它。用到的三个函数为:

在这里插入图片描述

为了构造 LUT 的方便,下面的推导中总是使得 PBS 输入的密文噪声是正整数,范围是 [ 0 , 2 β ) [0,2\beta) [0,2β)。这可通过 ( c , d ) → ( c , d + β ) (c,d) \to (c,d+\beta) (c,d)(c,d+β) 来实现。只要满足 α ≥ 2 β \alpha \ge 2\beta α2β,就可以准确解密。FHEW/TFHE 中的 LWE 私钥 s ∈ { 0 , ± 1 } n s \in \{0,\pm1\}^n s{0,±1}n 服从三元分布

Using 2 PBS

[LMP22] 的第一个方法:使用两次 PBS,但是对于噪声的约束较强, α ≥ 4 β \alpha \ge 4\beta α4β

基本思路:分别提取 ( [ c ] q , [ d ] q ) ([c]_q,[d]_q) ([c]q,[d]q) 相位(加密了 LSD)的 MSB 和其他位置,

  1. 先提取 ( [ c ] q , [ d ] q ) ([c]_q,[d]_q) ([c]q,[d]q) 的 MSB,将它从 ( c , d ) ∈ Z Q n + 1 (c,d) \in \mathbb Z_Q^{n+1} (c,d)ZQn+1 中移除。现在 ( [ c ′ ] q , [ d ′ ] q ) ([c']_q,[d']_q) ([c]q,[d]q) 的相位只位于半个环面上。
  2. 再提取 ( [ c ′ ] q , [ d ′ ] q ) ([c']_q,[d']_q) ([c]q,[d]q) 的消息,将它从 ( c ′ , d ′ ) ∈ Z Q n + 1 (c',d') \in \mathbb Z_Q^{n+1} (c,d)ZQn+1 中移除。现在 ( [ c ′ ′ ] q , [ d ′ ′ ] q ) ([c'']_q,[d'']_q) ([c′′]q,[d′′]q) 的相位是零。
  3. ( c ′ ′ , d ′ ′ ) (c'',d'') (c′′,d′′) 缩放 q / α q/\alpha q/α,降低密文模数。

在这里插入图片描述

假定 PBS 输出的噪声界是 β \beta β,初始输入 ( c , d ) c,d) c,d) 的噪声上界也是 β \beta β

  • HomFloor:
    • 输入噪声范围 ( − β , β ) (-\beta,\beta) (β,β),执行 step 2 噪声范围 ( 0 , 2 β ) (0,2\beta) (0,2β)
    • 执行 step 4,5,噪声范围是 ( 0 , 4 β ) (0,4\beta) (0,4β)这里需要 α ≥ 4 β \alpha \ge 4 \beta α4β,使得这个噪声不会影响到我们刚刚消除掉的 MSB,从而此时的 ( c , d ) (c,d) (c,d) 相位是 m ~ q + x \tilde mq+x m~q+x,其中 x ∈ [ 0 , q / 2 ) x \in [0,q/2) x[0,q/2) 包含了 LSD 以及噪声
    • 执行 step 6 和 step 7,获得相位 x + e x+e x+e 的密文,从 ( c , d ) (c,d) (c,d) 中减掉后,返回的相位是 m ~ q + e \tilde mq+e m~q+e(注意函数 f 1 : x ∈ Z q / 2 ↦ x ∈ Z q / 2 f_1:x\in \mathbb Z_{q/2} \mapsto x \in \mathbb Z_{q/2} f1:xZq/2xZq/2,整个 x x x 都被清零,包括本来的噪声),满足 ∣ e ∣ < β |e| < \beta e<β
  • HomSign:
    • 输入噪声范围 ( − β , β ) (-\beta,\beta) (β,β),执行 HomFloor 输出的噪声范围也是 ( − β , β ) (-\beta,\beta) (β,β)
    • 执行 step 13 的模切换,噪声规模是 α / q ⋅ β + ( ∥ s ∥ 1 + 1 ) / 2 \alpha/q \cdot \beta + (\|s\|_1+1)/2 α/qβ+(s1+1)/2
    • 假如满足 ∥ s ∥ 1 = O ( n ) ≤ β \|s\|_1=O(n)\le \beta s1=O(n)β,并且假设 q ≥ 4 α q\ge4\alpha q4α 以及 β ≥ 2 \beta\ge 2 β2,那么就有 α / q ⋅ β + ( ∥ s ∥ 1 + 1 ) / 2 < β \alpha/q \cdot \beta + (\|s\|_1+1)/2 < \beta α/qβ+(s1+1)/2<β,因此可以正确地执行 HomFloor
    • 执行 step 17 虽然噪声规模可能超过 α \alpha α,但是并不会影响 MSB 的值,因此可以正确地执行 Boot,最终的噪声范围是 ( − β , β ) (-\beta,\beta) (β,β)

当然,上述的分析是最坏情况的。如果使用平均情况,那么 ∥ s ∥ 2 = O ( n ) \|s\|_2 = O(\sqrt{n}) s2=O(n ),独立密文的加和噪声界 2 β \sqrt{2}\beta 2 β,可以将 β \beta β α \alpha α 都降低一些。

Using 3 PBS

为了给出通用的算法(尤其是 CKKS 的噪声和明文混合在一起),[LMP22] 给出了第二个方法:使用三次 PBS,支持任意的噪声, α ≥ 2 β \alpha \ge 2\beta α2β

基本思路:

  1. 首先消除 ( [ c ] q , [ d ] q ) ([c]_q,[d]_q) ([c]q,[d]q) 相位的第二高比特。现在(正的)噪声向上传播时,遇到被清零的第二高比特后,不再继续向 MSB 传递影响。
  2. 利用上一小节的算法,清理掉 LSD,然后模切换。

在这里插入图片描述

假定 PBS 输出的噪声界是 β \beta β,初始输入 ( c , d ) c,d) c,d) 的噪声上界也是 β \beta β

  • HomFloorAlt:
    • 输入噪声范围 ( − β , β ) (-\beta,\beta) (β,β),相位是 m ~ q + b q / 4 + x \tilde mq+bq/4+x m~q+bq/4+x,其中 b ∈ { 0 , 1 , 2 , 3 } , x ∈ [ 0 , q / 4 ) b \in \{0,1,2,3\},x \in [0,q/4) b{0,1,2,3},x[0,q/4),这里的 x x x 包含了噪声项
    • 执行 step 3,4 将 LSD 的第二高比特置为零,相位形如 m ~ q + b ~ q / 2 + x + e \tilde mq+\tilde bq/2+x+e m~q+b~q/2+x+e,其中 b ~ ∈ { 0 , 1 } \tilde b \in \{0,1\} b~{0,1},噪声为 e ∈ [ 0 , 2 β ) e \in [0,2\beta) e[0,2β)
    • 假设满足 q ≥ 8 β q \ge 8\beta q8β,那么 x + e < q / 4 + 2 β ≤ q / 2 x+e<q/4+2\beta\le q/2 x+e<q/4+2βq/2,它们不会改变 b b b 的值,因此并不会继续向更高的 m ~ \tilde m m~ 传播影响
    • 执行 step 6,7 清理掉 b b b 的值,现在的相位是 m ~ q + x + e + e ′ \tilde mq+x+e+e' m~q+x+e+e,它的 LSD 是 x + e + e ′ x+e+e' x+e+e,其中 e ′ ∈ [ 0 , 2 β ) e' \in [0,2\beta) e[0,2β)
    • 进一步假设 q ≥ 16 β q \ge 16\beta q16β,那么满足 x + e + e ′ < q / 4 + 4 β ≤ q / 2 x+e+e' < q/4+4\beta \le q/2 x+e+e<q/4+4βq/2,它落在了半环内
    • 执行 step 9 清理掉它们,新的噪声是 e ′ ′ ∈ ( − β , β ) e'' \in (-\beta,\beta) e′′(β,β)
  • HomSign:
    • 简单使用 HomFloorAlt 作为子例程,分析是一样的

PBS of Arbitrary Function

利用上述 HomFloor 的计算思路,为了利用 PBS 计算任意函数,我们可以将 m ∈ Z q / α m\in \mathbb Z_{q/\alpha} mZq/α 扩展到 b ∥ m ∈ { m , m + q / α } ⊆ Z 2 q / α b\|m\in\{m,m+q/\alpha\} \subseteq \mathbb Z_{2q/\alpha} bm{m,m+q/α}Z2q/α(随机的 b ∈ { 0 , 1 } b\in \{0,1\} b{0,1}),然后提取 sign 消除为 ( 0 ∥ m ) 2 = m (0\|m)_2=m (0∥m)2=m,接着使用半环上的函数执行 PBS 即可。

现在我们假定输入的 LWE 密文模数是 q q q,满足 2 q ∣ 2 N 2q \mid 2N 2q2N 可以被原始 PBS 支持。这导致相较于 HomFloor 中的 PBS,这里的 q q q 更小,明文精度丢失了 1 1 1 比特。

在这里插入图片描述

Homomorphic Digit Decomposition

为了执行 [GBA21] 的 Tree-based PBS(包括高精度 LWE 密文的自举),我们需要同态数字分解算法。因为 HomFloor 事实上就是在计算各个 Digit,并将它们从高精度 LWE 密文中减去的过程,因此仅需追踪此过程中产生的 ( [ c ] q , [ d ] q ) ([c]_q,[d]_q) ([c]q,[d]q) 即可。

在这里插入图片描述

输入 LWE 密文的相位 α ⋅ m + e \alpha \cdot m+e αm+e,输出 k = log ⁡ ( Q / α ) / log ⁡ ( q / α ) k=\log(Q/\alpha)/\log(q/\alpha) k=log(Q/α)/log(q/α) 个密文,它们的相位是 α ⋅ m i + e i \alpha \cdot m_i+e_i αmi+ei,满足 m = ∑ i = 0 k − 1 m i ⋅ ( q / α ) i m=\sum_{i=0}^{k-1} m_i \cdot (q/\alpha)^i m=i=0k1mi(q/α)i

Parameter Selection

略。。。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/585724.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Observer观察者模式(组件协作)

观察者模式&#xff08;组件协作&#xff09; 链接&#xff1a;观察者模式实例代码 解析 目的 在软件构建过程中&#xff0c;我们需要为某些对象建立一种“通知依赖关系” ——一个对象&#xff08;目标对象&#xff09;的状态发生改变&#xff0c;所有的依赖对象&#xff0…

UI演示双视图立体匹配与重建

相关文章&#xff1a; PyQt5和Qt designer的详细安装教程&#xff1a;https://blog.csdn.net/qq_43811536/article/details/135185233?spm1001.2014.3001.5501Qt designer界面和所有组件功能的详细介绍&#xff1a;https://blog.csdn.net/qq_43811536/article/details/1351868…

MySQL 执行过程

MySQL 的执行流程也确实是一个复杂的过程&#xff0c;它涉及多个组件的协同工作&#xff0c;故而在面试或者工作的过程中很容易陷入迷惑和误区。 MySQL 执行过程 本篇将以 MySQL 常见的 InnoDB 存储引擎为例&#xff0c;为大家详细介绍 SQL 语句的执行流程。从连接器开始&…

Spring基础IoC(控制反转)与DI(依赖注入)

1. Spring 基础 1.1 什么是Spring框架&#xff1f;它能带来那些好处&#xff1f; Spring 是一个开源的轻量级的 Java 开发框架&#xff0c;可以帮助开发人员更高效的进行开发&#xff0c;主要优势在于简化开发和框架整合。 Spring框架整合了很多模块&#xff0c;这些模块可以…

LeetCode 刷题日志

文章目录 1954. 收集足够苹果的最小花园周长思考&#xff1a;暴力枚举代码实现二分查找代码实现 1954. 收集足够苹果的最小花园周长 1954. 收集足够苹果的最小花园周长 难度&#xff1a; 中等 题目大意&#xff1a; 给你一个用无限二维网格表示的花园&#xff0c;每一个 整…

Matplotlib ------ 纵坐标科学计数法含义

matplotlib 纵坐标科学计数法含义 引言正文 引言 今天画图时遇到了一个问题&#xff0c;发现纵坐标是科学计数法的表示&#xff0c;但是很难理解它的含义&#xff0c;这里特来记录一下。 正文 我们以下图为例&#xff0c; 由图上我们可以看出&#xff0c;纵坐标显示为 1e-…

PHP序列化总结3--反序列化的简单利用及案例分析

反序列化中生成对象里面的值&#xff0c;是由反序列化里面的值决定&#xff0c;与原类中预定义的值的值无关&#xff0c;穷反序列化的对象可以使用类中的变量和方法 案例分析 反序列化中的值可以覆盖原类中的值 我们创建一个对象&#xff0c;对象创建的时候触发了construct方…

纯CSS3制作优惠券线性UI效果

纯CSS3制作优惠券线性UI效果-遇见你与你分享

《分布式事务理论基础:CAP定理 BASE理论》

目录 学习目标 1.分布式事务理论基础 1.1.本地事务 1.2.分布式事务 分布式事务产生的原因&#xff1f; 哪些场景会产生分布式事务&#xff1f; 单体系统会产生分布式事务问题吗&#xff1f; 只有一个库&#xff0c;会产生分布式事务问题吗&#xff1f; 分布式事务举…

rax3000m刷openwrt固件

rax3000m刷机过程&#xff08;nand版本&#xff09; 刷机准备文件https://www.123pan.com/s/X5m9-6Ynj.html提取码:VtBW 接线关系&#xff1a;路由器lan口接电脑 1.上传配置开启ssh的配置文件&#xff08;登录路由器后台管理界面在找到配置管理&#xff0c;上传配置文件rax3…

HBase深度历险 | 京东物流技术团队

简介 HBase 的全称是 Hadoop Database&#xff0c;是一个分布式的&#xff0c;可扩展&#xff0c;面向列簇的数据库&#xff0c;是一个通过大量廉价的机器解决海量数据的高速存储和读取的分布式数据库解决方案。本文会像剥洋葱一样&#xff0c;层层剥开她的心。 特点 首先我…

【网络安全 | CTF】FlatScience

该题考察SQL注入 正文 后台扫到robots.txt 页面内容如下&#xff1a; 进入login.php 页面源代码如图&#xff1a; 传参debug得到php代码&#xff1a; <?php if(isset($_POST[usr]) && isset($_POST[pw])){$user $_POST[usr];$pass $_POST[pw];$db new SQLite3…

ArcGIS批量计算shp面积并导出shp数据总面积(建模法)

在处理shp数据时&#xff0c; 又是我们需要知道许多个shp字段的批量计算&#xff0c;例如计算shp的总面积、面积平均值等&#xff0c;但是单个查看shp文件的属性进行汇总过于繁琐&#xff0c;因此可以借助建模批处理来计算。 首先准备数据&#xff1a;一个含有多个shp的文件夹。…

【三维目标检测/自动驾驶】IA-BEV:基于结构先验和自增强学习的实例感知三维目标检测(AAAI 2024)

系列文章目录 论文&#xff1a;Instance-aware Multi-Camera 3D Object Detection with Structural Priors Mining and Self-Boosting Learning 地址&#xff1a;https://arxiv.org/pdf/2312.08004.pdf 来源&#xff1a;复旦大学 英特尔Shanghai Key Lab /美团 文章目录 系列文…

初识智慧城市

文章目录 智慧家居 智慧社区 智慧交通 智慧医疗 智慧教育 智慧旅游 智慧农业 智慧安防 智慧家居 利用智能语音、智能交互等技术,实现用户对家居系统各设备的远程操控和能控制如开关窗帘(窗户)、操控家用电器和照明系统、打扫卫生等操作。利用计算机视觉等技术,对被照看…

数据库——简单查询复杂查询

1.实验内容及原理 1. 在 Windows 系统中安装 VMWare 虚拟机&#xff0c;在 VMWare 中安装 Ubuntu 系统,并在 Ubuntu 中搭建 LAMP 实验环境。 2. 使用 MySQL 进行一些基本操作&#xff1a; &#xff08;1&#xff09;登录 MySQL&#xff0c;在 MySQL 中创建用户&#xff0c;…

Tips:VS2022提示MSB8040 此项目需要缓解了 Spectre 漏洞的库解决方法。

1&#xff0c;打开Visual Studio Installer 2、点击【修改】 3、选中【单个组件】&#xff0c;输入Spectre&#xff0c;下拉到【编译 工具和运行时】进行选择&#xff08;尽量寻找最新版本&#xff09;&#xff0c;然后点击【修改】进行安装&#xff08;如果VS2022没有关闭&…

PHP序列化总结2--常见的魔术方法

魔术方法的概念 PHP的魔术方法是一种特殊的方法&#xff0c;用于覆盖PHP的默认操作。它们以双下划线&#xff08;__&#xff09;开头&#xff0c;后面跟着一些特定的字符串&#xff0c;如__construct()、__destruct()、__get()等。这些魔术方法在对象执行特定操作时被自动调用…

山西电力市场日前价格预测【2023-12-31】

日前价格预测 预测说明&#xff1a; 如上图所示&#xff0c;预测明日&#xff08;2023-12-31&#xff09;山西电力市场全天平均日前电价为445.23元/MWh。其中&#xff0c;最高日前电价为791.27元/MWh&#xff0c;预计出现在08:15。最低日前电价为270.52元/MWh&#xff0c;预计…

什么是SSL证书?在哪里免费申请?

随着互联网蓬勃发展&#xff0c;人们在日常生活中越来越依赖网络。然而&#xff0c;网络攻击和数据泄露日益猖獗&#xff0c;保护网站和用户信息的安全变得尤为紧迫。在这一背景下&#xff0c;SSL证书成为至关重要的安全措施。 SSL证书的首要功能在于防范网络攻击。相较于不安全…