基于蜜獾算法优化的BP神经网络(预测应用) - 附代码

基于蜜獾算法优化的BP神经网络(预测应用) - 附代码

文章目录

  • 基于蜜獾算法优化的BP神经网络(预测应用) - 附代码
    • 1.数据介绍
    • 2.蜜獾优化BP神经网络
      • 2.1 BP神经网络参数设置
      • 2.2 蜜獾算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用蜜獾算法优化BP神经网络并应用于预测。

1.数据介绍

本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据

2.蜜獾优化BP神经网络

2.1 BP神经网络参数设置

神经网络参数如下:

%% 构造网络结构
%创建神经网络
inputnum = 2;     %inputnum  输入层节点数 2维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 1;     %outputnum  隐含层节点数

2.2 蜜獾算法应用

蜜獾算法原理请参考:https://blog.csdn.net/u011835903/article/details/122236413

蜜獾算法的参数设置为:

popsize = 20;%种群数量
Max_iteration = 20;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:2*10 = 20; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:10*1 = 10;即hiddenum * outputnum;

第二层权值数量为:1;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 41;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( m s e ( T r a i n D a t a E r r o r ) + m e s ( T e s t D a t a E r r o r ) ) fitness = argmin(mse(TrainDataError) + mes(TestDataError)) fitness=argmin(mse(TrainDataError)+mes(TestDataError))
其中TrainDataError,TestDataError分别为训练集和测试集的预测误差。mse为求取均方误差函数,适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从蜜獾算法的收敛曲线可以看到,整体误差是不断下降的,说明蜜獾算法起到了优化的作用:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/58423.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android——基本控件(下)(十九)

1. 菜单:Menu 1.1 知识点 (1)掌握Android中菜单的使用; (2)掌握选项菜单(OptionsMenu)的使用; (3)掌握上下文菜单(ContextMenu&am…

【会议征稿】2023智能通信与网络国际学术会议(ICN 2023)

2023智能通信与网络国际学术会议(ICN 2023) 2023 International Conference on Intelligent Communication and Networking (ICN2023) 2023智能通信与网络国际学术会议(ICN 2023)将于2023年11月10-12日在中国常州召开。ICN 2023…

Vue3+TS+Vite中 vConsole 插件的使用

平时在web应用开发过程中,我们可以console.log去输出一些信息,但是在移动端,也就是在手机上,console.log的信息我们是看不到的,这时候就需要移动端调试工具vConsole 1. 依赖安装 npm install vconsole 或者 yarn ad…

扫雷小游戏

目录 一.扫雷小游戏 二.游戏主体一览 ​编辑 三.模块化设计扫雷游戏 3.1打印欢迎菜单 3.2创建两个二维数组 3.3棋盘稍加修改 3.4布置雷 3.5排查雷 四.游戏总体代码 4.1game.h头文件 4.2game.c函数实现源文件 4.3游戏main函数主体 五.游戏效果图 一.扫雷小游戏 这是…

Jmeter+ServerAgent

一、Jmeter 下载 https://jmeter.apache.org/download_jmeter.cgi选择Binaries二进制下载 apache-jmeter-5.6.2.tgz 修改配置文件 jmeter下的bin目录,打开jmeter.properties 文件 languagezh_CN启动命令 cd apache-jmeter-5.6/bin sh jmeter二、ServerAgent 监…

实战 图书馆系统管理案例

config :敏感的配置一般都是在配置中心配置,比如consul或者阿波罗上面controller :写一些handler的,拿到参数要去调用service层的逻辑。(只负责接受参数,怎么绑定参数,要去调用哪个service的&am…

Viobot输出数据说明

一.原始数据 1.ROS话题 1)相机原始图像数据 Type: sensor_msgs::Image Topic: 左目:/image_left 右目:/image_right 2)imu数据 Type: sensor_msgs::Imu Topic: /imu 3)TOF数据 点云数据: Type: sensor_msgs::P…

算法与数据结构(十)--图的入门

一.图的定义和分类 定义:图是由一组顶点和一组能够将两个顶点连接的边组成的。 特殊的图: 1.自环:即一条连接一个顶点和其自身的边; 2.平行边:连接同一对顶点的两条边; 图的分类: 按照连接两个顶点的边的…

带你速览主数据管理(MDM)的前世今生

主数据管理的历史可以追溯到很久以前,可以说主数据管理是生产生活的一部分。随着社会生产力和生产工具的不断发展,主数据和主数据管理在其中的作用不断提升,成为当今政府、企业和社会团队等组织管理中必不可少基础管理工作,同时也…

FrameBuffer 应用编程

目录 什么是FrameBufferLCD 的基础知识使用ioctl()获取屏幕参数信息使用mmap()将显示缓冲区映射到用户空间 LCD 应用编程练习之LCD 基本操作LCD 应用编程练习之显示BMP 图片BMP 图像介绍在LCD 上显示BMP 图像在开发板上测试 在LCD 上显示jpeg 图像在LCD 上显示png 图片LCD 横屏…

C语言_分支和循环语句(2)

文章目录 前言一、for 循环1.1语法1.2 for 语句的循环控制变量1.3 一些 for 循环的变种 二、do ... while()循环2.1 do 语句的语法2.2 do ... while 循环中的 break 和 continue2.3 练习1 **- 计算n的阶乘**2. - **在一个有序数组中查找具体的某个数字 n** 二分查找算法&#x…

68、使用aws官方的demo和配置aws服务,进行视频流上传播放

基本思想:参考官方视频,进行了配置aws,测试了视频推流,rtsp和mp4格式的视频貌似有问题,待调研和解决 第一步:1) 进入aws的网站,然后进入ioT Core 2)先配置 Thing types & Thing,选择香港的节点,然后AWS ioT--->Manage---> Thing type 然后输入名字,创建Th…

screen命令,可以断开服务器连接,依旧能运行你的程序了

可以参考博客1:https://blog.csdn.net/nima_zhang_b/article/details/82797928 可以参考博客2:https://blog.csdn.net/herocheney/article/details/130984403 Linux中的screen是一个命令行工具,可以让用户在同一个终端会话中创建多个虚拟终端。它非常有…

null值 字段运算

null值字段运算前先把null转成0 test表如下,num2为null select num1-num2 from test; 结果为null减去null值结果为null select sum(num1),SUM(num2) from test ;sum求和结果为null 判断字段是null不能用 null ,要用is null 错误写法: select IF(…

Spring AOP基于注解方式实现和细节

目录 一、Spring AOP底层技术 二、初步实现AOP编程 三、获取切点详细信息 四、 切点表达式语法 五、重用(提取)切点表达式 一、Spring AOP底层技术 SpringAop的核心在于动态代理,那么在SpringAop的底层的技术是依靠了什么技术呢&#x…

CSS按钮-跑马灯边框

思路很简单&#xff0c;实现方法有很多很多。但是大体思路与实现方法都类似&#xff1a;渐变色 动画&#xff0c;主要区别在动画的具体实现 0、HTML 结构 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><titl…

服务网格实施周期缩短 50%,丽迅物流基于阿里云 ACK 和 ASM 的云原生应用管理实践

作者&#xff1a;王夕宁、 刘强、 华相 公司介绍 丽迅物流是百丽旗下专注于时尚产业、为企业提供专业物流及供应链解决方案的服务商。其产品服务主要包括城市落地配、仓配一体、干线运输及定制化解决方案。通过自研智能化物流管理平台&#xff0c;全面助力企业合作集约化发展…

4年外包出来,5次面试全挂....

我的情况 大概介绍一下个人情况&#xff0c;男&#xff0c;毕业于普通二本院校非计算机专业&#xff0c;18年跨专业入行测试&#xff0c;第一份工作在湖南某软件公司&#xff0c;做了接近4年的外包测试工程师&#xff0c;今年年初&#xff0c;感觉自己不能够再这样下去了&…

leetcode 739. 每日温度

2023.8.28 本题用暴力双层for循环解会超时&#xff0c;所以使用单调栈来解决&#xff0c;本质上是用空间换时间。维护一个单调递减栈&#xff0c;存储的是数组的下标。 代码如下&#xff1a; class Solution { public:vector<int> dailyTemperatures(vector<int>&…

CPU和GPU的区别

介绍什么是GPU, 那就要从CPU和GPU的比较不同中能更好更快的学习到什么是GPU CPU和GPU的总体区别 CPU&#xff1a; 叫做中央处理器&#xff08;central processing unit&#xff09; 可以形象的理解为有25%的ALU(运算单元)、有25%的Control(控制单元)、50%的Cache(缓存单元)…