LLM之RAG实战(九)| 高级RAG 03:多文档RAG体系结构

       在RAG(检索和生成)这样的框架内管理和处理多个文档有很大的挑战。关键不仅在于提取相关内容,还在于选择包含用户查询所寻求的信息的适当文档。基于用户查询对齐的多粒度特性,需要动态选择文档,本文将介绍结构化层次检索来解决多文档RAG问题。

一、Llamaindex结构化检索介绍

        Llamaindex支持多层次信息检索。它不只是筛选文档,而是利用元数据过滤来简化选择过程。通过使用自动检索机制,这些过滤器可以根据用户查询检索出最相关的文档。这个过程包括推断语义查询,在矢量数据库中确定最佳过滤器集,有效地将文本到SQL和语义搜索的能力结合起来。

二、结构化层次检索的优点

下面介绍Llamaindex提供的结构化分层检索的一些好处:

  1. 增强相关性:通过利用元数据驱动的过滤器,可以准确地识别和检索符合用户查询细微要求的文档。这确保了内容选择中更高的相关性和准确性;

  2. 动态文档选择:与传统的静态文档检索是不同,Llamaindex支持动态文档选择。Llamaindex通过根据相关文档的属性和结构化元数据灵活选择相关文档,智能地适应不同的用户查询;

  3. 高效信息检索:结构化层次检索显著提高了信息检索的效率。通过将文档预处理到元数据字典中并将其存储在矢量数据库中,该系统简化了检索过程,最大限度地减少了计算开销并优化了搜索效率;

  4. 语义查询优化:文本到SQL和语义搜索的融合使系统能够更好地理解用户意图。Llamaindex的自动检索机制将用户查询细化为语义结构,从而能够从文档存储库中精确而细致地检索信息。

三、结构化层次检索代码实现

       下面使用Python代码来展示Llamaindex的基本概念,并实现一个结构化的分层检索系统。使用Llamaindex类初始化来管理矢量数据库中的文档元数据。

  • 文档添加add_document方法通过创建包含摘要和关键字等关键信息的元数据字典,将文档添加到Llamaindex;
  • 检索逻辑retrieve_documents方法通过将用户查询与矢量数据库中的元数据过滤器进行匹配来处理用户查询。为了演示目的,使用了一个基本的模拟匹配逻辑;
  • 匹配机制match_metadata方法模拟用户查询和文档元数据之间的匹配过程。这是一个简化的演示逻辑,通常会使用更高级的NLP或语义分析技术。

      本示例旨在说明Llamaindex的核心概念,展示如何通过Python中的简化实现来存储文档元数据并基于用户查询检索相关文档。

步骤1:安装库

!pip install llama-index wandb llama_hub weaviate-client --quiet

步骤2:导入库

import osimport openaiimport loggingimport sysfrom IPython.display import Markdown, displayfrom llama_index.llms import OpenAIfrom llama_index.callbacks import CallbackManager, WandbCallbackHandlerfrom llama_index import load_index_from_storageimport pandas as pdfrom llama_index.query_engine import PandasQueryEnginefrom pprint import pprintfrom llama_index import (    VectorStoreIndex,    SimpleKeywordTableIndex,    SimpleDirectoryReader,    StorageContext,    ServiceContext,)import nest_asyncionest_asyncio.apply()#Setup  OPEN API Keyos.environ["OPENAI_API_KEY"] = ""# openai_key = "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" #<--- Your API KEY# openai.api_key = openai_keylogging.basicConfig(stream=sys.stdout, level=logging.INFO)logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))# initialise WandbCallbackHandler and pass any wandb.init argswandb_args = {"project":"llama-index-report"}wandb_callback = WandbCallbackHandler(run_args=wandb_args)# pass wandb_callback to the service contextcallback_manager = CallbackManager([wandb_callback])service_context = ServiceContext.from_defaults(llm=OpenAI(model="gpt-3.5-turbo-0613", temperature=0), chunk_size=1024, callback_manager=callback_manager)

步骤3:下载Github issues

os.environ["GITHUB_TOKEN"] = ""from llama_hub.github_repo_issues import (    GitHubRepositoryIssuesReader,    GitHubIssuesClient,)github_client = GitHubIssuesClient()loader = GitHubRepositoryIssuesReader(    github_client,    owner="run-llama",    repo="llama_index",    verbose=True,)orig_docs = loader.load_data()limit = 100docs = []for idx, doc in enumerate(orig_docs):    doc.metadata["index_id"] = doc.id_    if idx >= limit:        break    docs.append(doc)# OutputFound 100 issues in the repo page 1Resulted in 100 documentsFound 100 issues in the repo page 2Resulted in 200 documentsFound 100 issues in the repo page 3Resulted in 300 documentsFound 8 issues in the repo page 4Resulted in 308 documentsNo more issues found, stopping
from copy import deepcopyimport asynciofrom tqdm.asyncio import tqdm_asynciofrom llama_index import SummaryIndex, Document, ServiceContextfrom llama_index.llms import OpenAIfrom llama_index.async_utils import run_jobsasync def aprocess_doc(doc, include_summary: bool = True):    """Process doc."""    print(f"Processing {doc.id_}")    metadata = doc.metadata    date_tokens = metadata["created_at"].split("T")[0].split("-")    year = int(date_tokens[0])    month = int(date_tokens[1])    day = int(date_tokens[2])    assignee = (        "" if "assignee" not in doc.metadata else doc.metadata["assignee"]    )    size = ""    if len(doc.metadata["labels"]) > 0:        size_arr = [l for l in doc.metadata["labels"] if "size:" in l]        size = size_arr[0].split(":")[1] if len(size_arr) > 0 else ""    new_metadata = {        "state": metadata["state"],        "year": year,        "month": month,        "day": day,        "assignee": assignee,        "size": size,        "index_id": doc.id_,    }    # now extract out summary    summary_index = SummaryIndex.from_documents([doc])    query_str = "Give a one-sentence concise summary of this issue."    query_engine = summary_index.as_query_engine(        service_context=ServiceContext.from_defaults(            llm=OpenAI(model="gpt-3.5-turbo")        )    )    summary_txt = str(query_engine.query(query_str))    new_doc = Document(text=summary_txt, metadata=new_metadata)    return new_docasync def aprocess_docs(docs):    """Process metadata on docs."""    new_docs = []    tasks = []    for doc in docs:        task = aprocess_doc(doc)        tasks.append(task)    new_docs = await run_jobs(tasks, show_progress=True, workers=5)    # new_docs = await tqdm_asyncio.gather(*tasks)    return new_docsnew_docs = await aprocess_docs(docs)# OutputProcessing 9398Processing 9427Processing 9613Processing 9417Processing 9612Processing 8832Processing 9609Processing 9353Processing 9431Processing 9426Processing 9425Processing 9435Processing 9419Processing 9571Processing 9373Processing 9383Processing 9408Processing 9405Processing 9372Processing 9546Processing 9565Processing 9664Processing 9560Processing 9470Processing 9343Processing 9518Processing 9358Processing 8536Processing 9385Processing 9380Processing 9510Processing 9352Processing 9368Processing 7457Processing 8893Processing 9583Processing 9312Processing 7720Processing 9219Processing 9481Processing 9469Processing 9655Processing 9477Processing 9670Processing 9475Processing 9667Processing 9665Processing 9348Processing 9471Processing 9342Processing 9488Processing 9338Processing 9523Processing 9416Processing 7726Processing 9522Processing 9652Processing 9520Processing 9651Processing 7244Processing 9650Processing 9519Processing 9649Processing 9492Processing 9603Processing 9509Processing 9269Processing 9491Processing 8802Processing 9525Processing 9611Processing 9543Processing 8551Processing 9627Processing 9450Processing 9658Processing 9421Processing 9394Processing 9653Processing 9439Processing 9604Processing 9413Processing 9507Processing 9625Processing 9490Processing 9626Processing 9483Processing 9638Processing 7744Processing 9472Processing 8475Processing 9244Processing 9618100%|██████████| 100/100 [02:07<00:00,  1.27s/it]

步骤4:将数据加载到Weaviate Vector Store

from llama_index.vector_stores import WeaviateVectorStorefrom llama_index.storage import StorageContextfrom llama_index import VectorStoreIndeximport weaviate# cloudauth_config = weaviate.AuthApiKey(api_key="")client = weaviate.Client(    "https://<weaviate-cluster>.weaviate.network",    auth_client_secret=auth_config,)class_name = "LlamaIndex_auto"vector_store = WeaviateVectorStore(    weaviate_client=client, index_name=class_name)storage_context = StorageContext.from_defaults(vector_store=vector_store)# Since "new_docs" are concise summaries, we can directly feed them as nodes into VectorStoreIndexindex = VectorStoreIndex(new_docs, storage_context=storage_context)docs[0].metadata# Output{'state': 'open', 'created_at': '2023-12-21T20:18:03Z', 'url': 'https://api.github.com/repos/run-llama/llama_index/issues/9655', 'source': 'https://github.com/run-llama/llama_index/pull/9655', 'labels': ['size:L'], 'index_id': '9655'}

步骤5:对原始文档建立Weaviate Index

vector_store = WeaviateVectorStore(    weaviate_client=client, index_name=doc_class_name)storage_context = StorageContext.from_defaults(vector_store=vector_store)doc_index = VectorStoreIndex.from_documents(    docs, storage_context=storage_context)

步骤6:建立自动检索机制

自动检索器的设置过程通过分为以下几个关键步骤:

  1. 定义Schema:定义向量数据库模式,包括元数据字段;

  2. VectorIndexAutoRetriever初始化:实例化此类将创建一个利用压缩元数据索引的检索器。需要定义的Schema作为其输入;

  3. 创建Wrapper Retriever:该步骤主要将每个节点后处理为IndexNode。此转换包含一个链接回源文档的索引ID,此链接支持在后面的部分中进行递归检索,依靠IndexNode对象与下游检索器、查询引擎或其他节点连接。

6(a)定义Schema

from llama_index.vector_stores.types import MetadataInfo, VectorStoreInfovector_store_info = VectorStoreInfo(    content_info="Github Issues",    metadata_info=[        MetadataInfo(            name="state",            description="Whether the issue is `open` or `closed`",            type="string",        ),        MetadataInfo(            name="year",            description="The year issue was created",            type="integer",        ),        MetadataInfo(            name="month",            description="The month issue was created",            type="integer",        ),        MetadataInfo(            name="day",            description="The day issue was created",            type="integer",        ),        MetadataInfo(            name="assignee",            description="The assignee of the ticket",            type="string",        ),        MetadataInfo(            name="size",            description="How big the issue is (XS, S, M, L, XL, XXL)",            type="string",        ),    ],)

6(b)实例化 VectorIndexAutoRetriever

from llama_index.retrievers import VectorIndexAutoRetrieverretriever = VectorIndexAutoRetriever(    index,    vector_store_info=vector_store_info,    similarity_top_k=2,    empty_query_top_k=10,  # if only metadata filters are specified, this is the limit    verbose=True,)
nodes = retriever.retrieve("Tell me about some issues on 12/11")print(f"Number retrieved: {len(nodes)}")print(nodes[0].metadata)# OutputUsing query str: Using filters: [('month', '==', 12), ('day', '==', 11)]Number retrieved: 6{'state': 'open', 'year': 2023, 'month': 12, 'day': 11, 'assignee': '', 'size': 'XL', 'index_id': '9431'}

6(c)定义Wrapper Retriever

from llama_index.retrievers import BaseRetrieverfrom llama_index.indices.query.schema import QueryBundlefrom llama_index.schema import IndexNode, NodeWithScoreclass IndexAutoRetriever(BaseRetriever):    """Index auto-retriever."""    def __init__(self, retriever: VectorIndexAutoRetriever):        """Init params."""        self.retriever = retriever    def _retrieve(self, query_bundle: QueryBundle):        """Convert nodes to index node."""        retrieved_nodes = self.retriever.retrieve(query_bundle)        new_retrieved_nodes = []        for retrieved_node in retrieved_nodes:            index_id = retrieved_node.metadata["index_id"]            index_node = IndexNode.from_text_node(                retrieved_node.node, index_id=index_id            )            new_retrieved_nodes.append(                NodeWithScore(node=index_node, score=retrieved_node.score)            )        return new_retrieved_nodesindex_retriever = IndexAutoRetriever(retriever=retriever)

步骤7:建立递归检索机制

       这种类型的检索器将检索器的每个节点连接到另一个检索器、查询引擎或节点。该设置包括将每个汇总的元数据节点链接到与相应文档对应的RAG管道对齐的检索器。

配置过程如下:

  1. 为每个文档定义一个检索器,并把他们添加到字典中;

  2. 定义递归检索器:在参数中定义包括root检索器(汇总元数据检索器)和其他文档检索器。

from llama_index.vector_stores.types import (    MetadataFilter,    MetadataFilters,    FilterOperator,)retriever_dict = {}query_engine_dict = {}for doc in docs:    index_id = doc.metadata["index_id"]    # filter for the specific doc id    filters = MetadataFilters(        filters=[            MetadataFilter(                key="index_id", operator=FilterOperator.EQ, value=index_id            ),        ]    )    retriever = doc_index.as_retriever(filters=filters)    query_engine = doc_index.as_query_engine(filters=filters)    retriever_dict[index_id] = retriever    query_engine_dict[index_id] = query_engine
from llama_index.retrievers import RecursiveRetriever# note: can pass `agents` dict as `query_engine_dict` since every agent can be used as a query enginerecursive_retriever = RecursiveRetriever(    "vector",    retriever_dict={"vector": index_retriever, **retriever_dict},    # query_engine_dict=query_engine_dict,    verbose=True,)nodes = recursive_retriever.retrieve("Tell me about some issues on 12/11")print(f"Number of source nodes: {len(nodes)}")nodes[0].node.metadata# OutputRetrieving with query id None: Tell me about some issues on 12/11Using query str: Using filters: [('month', '==', 12), ('day', '==', 11)]Retrieved node with id, entering: 9431Retrieving with query id 9431: Tell me about some issues on 12/11Retrieving text node: Dev awiss# DescriptionTry to use clickhouse as vectorDB.Try to chunk docs with independent parser service.Special designed schema and tricks for better query and retriever. Fixes # (issue)## Type of ChangePlease delete options that are not relevant.- [ ] Bug fix (non-breaking change which fixes an issue)- [ ] New feature (non-breaking change which adds functionality)- [ ] Breaking change (fix or feature that would cause existing functionality to not work as expected)- [ ] This change requires a documentation update# How Has This Been Tested?Please describe the tests that you ran to verify your changes. Provide instructions so we can reproduce. Please also list any relevant details for your test configuration- [ ] Added new unit/integration tests- [ ] Added new notebook (that tests end-to-end)- [ ] I stared at the code and made sure it makes sense# Suggested Checklist:- [ ] I have performed a self-review of my own code- [ ] I have commented my code, particularly in hard-to-understand areas- [ ] I have made corresponding changes to the documentation- [ ] I have added Google Colab support for the newly added notebooks.- [ ] My changes generate no new warnings- [ ] I have added tests that prove my fix is effective or that my feature works- [ ] New and existing unit tests pass locally with my changes- [ ] I ran `make format; make lint` to appease the lint godsRetrieved node with id, entering: 9435Retrieving with query id 9435: Tell me about some issues on 12/11Retrieving text node: [Bug]: [nltk_data] Error loading punkt: <urlopen error [WinError 10060] A### Bug DescriptionI am using a vector Index which connects to a chromaDB client as my database. I have initialized the index as a chat engine. When the query the chat engine, two things happen:1. The response time is nearly 2-3mins.2. It throws the below warning```[nltk_data] Error loading punkt: <urlopen error [WinError 10060] A[nltk_data]     connection attempt failed because the connected party[nltk_data]     did not properly respond after a period of time, or[nltk_data]     established connection failed because connected host[nltk_data]     has failed to respond>```### Version0.9.8.post1### Steps to ReproduceClone, setup and run the below repository: (Follow readme for instructions)https://github.com/umang299/document-gpt### Relevant Logs/Tracbacks_No response_Retrieved node with id, entering: 9426Retrieving with query id 9426: Tell me about some issues on 12/11Retrieving text node: Slack Loader with large lack channels### Question Validation- [X] I have searched both the documentation and discord for an answer.### QuestionHi team,I am using the [Slack Loader ](https://llamahub.ai/l/slack)from Llama Hub. For smaller Slack channels it works fine. However, for larger channels with lots of messages created over months, I keep seeing this message:`Rate limit error reached, sleeping for: 10 seconds`Is there a recommended / idiomatic way to load larger Slack channels to avoid this issue?Retrieved node with id, entering: 9425Retrieving with query id 9425: Tell me about some issues on 12/11Retrieving text node: [Feature Request]: Make llama-index compartible with models finetuned and hosted on modal.com### Feature DescriptionModal.com is a cloud computing service that allows you to finetune and host models on their workers. They provide inference points for any models finetuned on their platform.### ReasonI have not tried implementing the feature. I just read about the capabilities on modal.com and thought it would be a good integration feature for llama-index to allow for more configuration.### Value of FeatureAn integration feature to allow users who host their models on modal to use llama-index for their RAG and prompt engineering pipelines.Retrieved node with id, entering: 9439Retrieving with query id 9439: Tell me about some issues on 12/11Retrieving text node: [Bug]: Metadata filter not working with Elastic search indexing ### Bug DescriptionWhile retrieving from ES with multiple metadatafilter condition(OR/AND) its not taking it into account. It always performs an AND operation even if its explicitly mentioned OR.Example below code should filter and retrieve only 'mafia' or "Stephen King" bit its not doing as expected.filters = MetadataFilters(    filters=[        MetadataFilter(key="theme", value="Mafia"),        MetadataFilter(key="author", value="Stephen King"),    ],    condition=FilterCondition.OR,)retriever = index.as_retriever(filters=filters)### Version0.9.13### Steps to Reproducenodes = [TextNode(text="The Shawshank Redemption",metadata={"author": "Stephen King","theme": "Friendship",},),TextNode(text="The Godfather",metadata={"director": "Francis Ford Coppola","theme": "Mafia",},),TextNode(text="Inception",metadata={"director": "Christopher Nolan",},),]filters = MetadataFilters(    filters=[        MetadataFilter(key="theme", value="Mafia"),        MetadataFilter(key="author", value="Stephen King"),    ],    condition=FilterCondition.OR,)retriever = index.as_retriever(filters=filters)### Relevant Logs/Tracbacks_No response_Retrieved node with id, entering: 9427Retrieving with query id 9427: Tell me about some issues on 12/11Retrieving text node: [Feature Request]: Postgres BM25 support### Feature DescriptionFeature: add a variation of PGVectorStore which uses ParadeDB's BM25 extension.BM25 is now possible in Postgres with a Rust extension [pg_bm25): https://github.com/paradedb/paradedb/tree/dev/pg_bm25Unsure if it might be better to use [pg_search](https://github.com/paradedb/paradedb/tree/dev/pg_search) and get HNSW at the same time..I'm interested in contributing on this myself, but am just starting to look into it. Interested to hear others' thoughts.### ReasonAlthough the code comments for the PGVectorStore class currently suggest BM25 search is present in Postgres - it is not.### Value of FeatureBM25 retrieval hit rate and MRR is measurable better than Postgres full text search with tsvector and tsquery. Indexing is also supposed to be faster with pg_bm25.Number of source nodes: 6{'state': 'open', 'created_at': '2023-12-11T10:17:52Z', 'url': 'https://api.github.com/repos/run-llama/llama_index/issues/9431', 'source': 'https://github.com/run-llama/llama_index/pull/9431', 'labels': ['size:XL'], 'index_id': '9431'}

步骤8:插入RetrieverQueryEngine

from llama_index.query_engine import RetrieverQueryEnginefrom llama_index import ServiceContextllm = OpenAI(model="gpt-3.5-turbo")service_context = ServiceContext.from_defaults(llm=llm)query_engine = RetrieverQueryEngine.from_args(recursive_retriever, llm=llm)response = query_engine.query(    "Tell me about some open issues related to agents")print(str(response)) # OutputThere were several issues created on 12/11. One of them is a bug where the metadata filter is not working correctly with Elastic search indexing. Another bug involves an error loading the 'punkt' module in the NLTK library. There are also a couple of feature requests, one for adding Postgres BM25 support and another for making llama-index compatible with models finetuned and hosted on modal.com. Additionally, there is a question about using the Slack Loader with large Slack channels.

四、结论

        总之,将Llamaindex集成到多文档RAG架构的结构中预示着信息检索的新时代。它能够基于结构化元数据动态选择文档,再加上语义查询优化的技巧,重塑了我们如何利用庞大文档存储库中的知识,提高了检索过程的效率、相关性和准确性。

参考文献:

[1] https://ai.gopubby.com/structured-hierarchical-retrieval-revolutionizing-multi-document-rag-architectures-f101463db689

[2] https://weaviate.io/developers/wcs/quickstart

[3] https://docs.llamaindex.ai/en/stable/examples/query_engine/multi_doc_auto_retrieval/multi_doc_auto_retrieval.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/583177.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

腾讯云轻量服务器和云服务器区别对比(超详细)

腾讯云轻量服务器和云服务器CVM该怎么选&#xff1f;不差钱选云服务器CVM&#xff0c;追求性价比选择轻量应用服务器&#xff0c;轻量真优惠呀&#xff0c;活动 https://curl.qcloud.com/oRMoSucP 轻量应用服务器2核2G3M价格62元一年、2核2G4M价格118元一年&#xff0c;540元三…

设计模式-多例模式

设计模式专栏 模式介绍多例模式和单例模式的区别应用场景Spring中多例模式的优缺点代码示例Java实现多例模式Python实现多例模式 多例模式在spring中的应用 模式介绍 多例模式是一种创建型设计模式&#xff0c;属于对象创建类型。多例模式的特点是允许一个类有多个实例&#x…

西北大学844计算机类考研-25级初试高分总攻略

西北大学844计算机类考研-25级初试高分攻略 个人介绍 ​ 本人是西北大学22级软件工程研究生&#xff0c;考研专业课129分&#xff0c;过去一年里在各大辅导机构任职&#xff0c;辅导考研学生专业课844&#xff0c;辅导总时长达400小时&#xff0c;辅导学生超过20余人&#xf…

Android集成OpenSSL实现加解密-集成

导入so 将编译生成的 OpenSSL 动态库文件&#xff08;.so 文件&#xff09;复制到你的 Android 项目的 libs 目录中 导入头文件 将编译生成的include文件夹导入到项目中 build.gradle添加配置 defaultConfig {……testInstrumentationRunner "androidx.test.runner…

java对象整理

1.对象的创建过程 首先class文件加载到内存中 这个过程如下 “加载”是“类加载”(Class Loading)过程的第一步。这个加载过程主要就是靠类加载器实现的&#xff0c; 包括用户自定义类加载器。 加载到内存后做的事情 申请对象内存 成员变量赋默认值 调用构造方法 成员变量顺序…

V-rep(CoppeliaSim)添加相机,与python联合仿真,并使用python读取V-rep中的RGB图与深度图

目录 前言在V-rep中构建场景建立python与V-rep通信 前言 本文主要介绍了如何使用python与V-rep联合仿真&#xff0c;并用OpenCV可视化V-rep中视觉传感器所能看到的 RGB图和深度图&#xff0c;效果图如下。 在V-rep中构建场景 本文使用的V-rep版本是3.5&#xff1a; 打开V-…

009:vue结合el-table实现表格行拖拽排序(基于sortablejs)

文章目录 1. 实现效果2. 安装 sortablejs 插件3. 完整组件代码4. 注意点 1. 实现效果 2. 安装 sortablejs 插件 sortablejs 更多用法 cnpm i --save sortablejs3. 完整组件代码 <template><div class"home"><div class"body"><el-ta…

MongoDB 面试题

MongoDB 面试题 1. 什么是MongoDB&#xff1f; MongoDB是一种非关系型数据库&#xff0c;被广泛用于大型数据存储和分布式系统的构建。MongoDB支持的数据模型比传统的关系型数据库更加灵活&#xff0c;支持动态查询和索引&#xff0c;也支持BSON格式的数据存储&#xff0c;这…

从外网访问内网服务器:安装到使用一站通

如果你所在的是一个小的实验室&#xff0c;可能并没有大型的服务器集群而是仅是配备了小型服务器&#xff0c;日常工作便是在在局域网内访问服务器进行各项数据处理。因为在外网无法访问内网服务器&#xff0c;极大的限制了我们偶尔在外想监测一下数据的欲望。本文介绍了一种简…

postman win7 低版本 postman7.0.9win64 postman7.0.9win32

百度网盘&#xff1a; postman7.0.9win64&#xff1a; 链接: https://pan.baidu.com/s/18ck9tI0r9Pqoz36MOwwnnQ 提取码: rkf7 postman7.0.9win32&#xff1a; 链接: https://pan.baidu.com/s/1HrpGPrgvVzyAcjdHuwVOpA 提取码: ke5k win7系统安装postman&#xff0c;可能会…

postman使用-04响应

文章目录 响应响应界面说明Pretty&#xff1a;格式化显示&#xff0c;以便查看Raw&#xff1a;不进行任何处理&#xff0c;显示响应数据的原始格式Preview&#xff1a;预览响应体&#xff0c;会自动换行&#xff0c;不会格式化&#xff08;有时候是数据&#xff0c;有时候是页面…

实战 | 使用OpenCV快速去除文档中的表格线条(步骤 + 源码)

导 读 本文主要介绍如何使用OpenCV快速去除文档中的表格线条,并给详细步骤和代码。 背景介绍 测试图如下,目标是去除下面三张图中的表格线条,方便后续图像处理。 实现步骤 下面演示详细步骤,以图1为例: 【1】获取二值图像:加载图像、转为灰度图、OTSU二值化 i…

日本it培训班,日本IT大体分几类?

日本是一个老龄化极其严重的国家&#xff0c;拜泡沫经济破灭后的经济停滞所赐&#xff0c;民众取得了节育方面的丰硕成果&#xff0c;然而当经济终于走出阴霾&#xff0c;呈现复苏迹象时&#xff0c;短缺的劳动力又成了一大问题&#xff0c;拖累整个经济的步伐。为了应对劳工市…

仪表盘、数据分析新增分享功能及应用服务下新增服务实例菜单

近期&#xff0c;博睿数据根据一体化智能可观测平台 Bonree ONE 产品本身&#xff0c;以及用户反馈进行持续的更新和优化。以下为 Bonree ONE 产品功能更新报告第03期内容&#xff0c;更多探索&#xff0c;未完待续。 本次迭代的更新集中在平台的仪表盘、数据分析新增分享功能&…

C++面向对象(OOP)编程-C++11新特性详解

C11作为一个重要的版本&#xff0c;引入了很多新的特性&#xff0c;解决了C语言本身很多遗留的内存泄露问题&#xff0c;并且提供了很多比较灵活的用法。引入的auto&#xff0c;智能指针、线程机制都使得C语言的灵活性、安全性、并发性有了很大的提升。 本文会比较详细的介绍C1…

Kubernetes 学习总结(41)—— 云原生容器网络详解

背景 随着网络技术的发展&#xff0c;网络的虚拟化程度越来越高&#xff0c;特别是云原生网络&#xff0c;叠加了物理网络、虚机网络和容器网络&#xff0c;数据包在网络 OSI 七层网络模型、TCP/IP 五层网络模型的不同网络层进行封包、转发和解包。网络数据包跨主机网络、容器…

IntelliJ IDE 插件开发 | (四)开发一个时间管理大师插件

系列文章 IntelliJ IDE 插件开发 |&#xff08;一&#xff09;快速入门IntelliJ IDE 插件开发 |&#xff08;二&#xff09;UI 界面与数据持久化IntelliJ IDE 插件开发 |&#xff08;三&#xff09;消息通知与事件监听IntelliJ IDE 插件开发 |&#xff08;四&#xff09;开发一…

未来编程语言什么样?编译解释兼方为王

○、编程语言的未来&#xff1f; 随着科技的飞速发展&#xff0c;编程语言在计算机领域中扮演着至关重要的角色。它们是软件开发的核心&#xff0c;为程序员提供了与机器沟通的桥梁。那么&#xff0c;在技术不断进步的未来&#xff0c;编程语言的走向又将如何呢&#xff1f; …

【银行测试】金融银行-理财项目面试/分析总结(二)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 银行理财相关的项…

CSS 纵向扩展动画

上干货 <template><!-- mouseenter"startAnimation" 表示在鼠标进入元素时触发 startAnimation 方法。mouseleave"stopAnimation" 表示在鼠标离开元素时触发 stopAnimation 方法。 --><!-- 容器元素 --><div class"container&q…