Bert-vits2最终版Bert-vits2-2.3云端训练和推理(Colab免费GPU算力平台)

在这里插入图片描述

对于深度学习初学者来说,JupyterNoteBook的脚本运行形式显然更加友好,依托Python语言的跨平台特性,JupyterNoteBook既可以在本地线下环境运行,也可以在线上服务器上运行。GoogleColab作为免费GPU算力平台的执牛耳者,更是让JupyterNoteBook的脚本运行形式如虎添翼。

本次我们利用Bert-vits2的最终版Bert-vits2-v2.3和JupyterNoteBook的脚本来复刻生化危机6的人气角色艾达王(ada wong)。

本地调试JupyterNoteBook

众所周知,GoogleColab虽然可以免费提供GPU让用户用于模型训练和推理,但是每一个JupyterNoteBook文件脚本最多只能运行12小时,随后就会被限制,所以为了避免浪费宝贵的GPU使用时间,我们可以在线下调试自己的JupyterNoteBook脚本,调试成功后,就可以把脚本直接上传到GoogleColab平台。

首先通过pip命令进行本地安装:

python3 -m pip install jupyter

随后运行启动命令:

jupyter notebook

此时,访问本地的notebook地址:

随后选择文件-》新建-》Notebook 即可。

输入笔记内容:

#@title 查看显卡  
!nvidia-smi

点击运行单元格:

程序返回:

#@title 查看显卡  
!nvidia-smi  
Wed Dec 27 12:36:10 2023         
+---------------------------------------------------------------------------------------+  
| NVIDIA-SMI 546.17                 Driver Version: 546.17       CUDA Version: 12.3     |  
|-----------------------------------------+----------------------+----------------------+  
| GPU  Name                     TCC/WDDM  | Bus-Id        Disp.A | Volatile Uncorr. ECC |  
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |  
|                                         |                      |               MIG M. |  
|=========================================+======================+======================|  
|   0  NVIDIA GeForce RTX 4060 ...  WDDM  | 00000000:01:00.0 Off |                  N/A |  
| N/A   50C    P0              20W / 115W |      0MiB /  8188MiB |      0%      Default |  
|                                         |                      |                  N/A |  
+-----------------------------------------+----------------------+----------------------+  +---------------------------------------------------------------------------------------+  
| Processes:                                                                            |  
|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |  
|        ID   ID                                                             Usage      |  
|=======================================================================================|  
|  No running processes found                                                           |  
+---------------------------------------------------------------------------------------+

至此,就可以在本地调试NoteBook了。

安装ffmpeg

新增单元格:

#@title 安装ffmpeg  
import os, uuid, re, IPython  
import ipywidgets as widgets  
import time  from glob import glob  
from google.colab import output, drive  from IPython.display import clear_output  
import os, sys, urllib.request  
HOME = os.path.expanduser("~")  
pathDoneCMD = f'{HOME}/doneCMD.sh'  
if not os.path.exists(f"{HOME}/.ipython/ttmg.py"):  hCode = "https://raw.githubusercontent.com/yunooooo/gcct/master/res/ttmg.py"  urllib.request.urlretrieve(hCode, f"{HOME}/.ipython/ttmg.py")  from ttmg import (  loadingAn,  textAn,  
)  loadingAn(name="lds")  
textAn("Cloning Repositories...", ty='twg')  
!git clone https://github.com/XniceCraft/ffmpeg-colab.git  
!chmod 755 ./ffmpeg-colab/install  
textAn("Installing FFmpeg...", ty='twg')  
!./ffmpeg-colab/install  
clear_output()  
print('Installation finished!')  
!rm -fr /content/ffmpeg-colab  
!ffmpeg -version

由于语音转写需要ffmpeg的参与,所以需要安装ffmpeg的最新版本。

程序返回:

Installation finished!  
c Copyright (c) 2000-2023 the FFmpeg developers  
built with gcc 9 (Ubuntu 9.4.0-1ubuntu1~20.04.1)  
configuration: --prefix=/home/ffmpeg-builder/release --pkg-config-flags=--static --extra-libs=-lm --disable-doc --disable-debug --disable-shared --disable-ffprobe --enable-static --enable-gpl --enable-version3 --enable-runtime-cpudetect --enable-avfilter --enable-filters --enable-nvenc --enable-nvdec --enable-cuvid --toolchain=hardened --disable-stripping --enable-opengl --pkgconfigdir=/home/ffmpeg-builder/release/lib/pkgconfig --extra-cflags='-I/home/ffmpeg-builder/release/include -static-libstdc++ -static-libgcc ' --extra-ldflags='-L/home/ffmpeg-builder/release/lib -fstack-protector -static-libstdc++ -static-libgcc ' --extra-cxxflags=' -static-libstdc++ -static-libgcc ' --extra-libs='-ldl -lrt -lpthread' --enable-ffnvcodec --enable-gmp --enable-libaom --enable-libass --enable-libbluray --enable-libdav1d --enable-libfdk-aac --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libgme --enable-libkvazaar --enable-libmp3lame --enable-libopus --enable-libopencore_amrnb --enable-libopencore_amrwb --enable-libopenh264 --enable-libopenjpeg --enable-libshine --enable-libsoxr --enable-libsrt --enable-libsvtav1 --enable-libtheora --enable-libvidstab --ld=g++ --enable-libvmaf --enable-libvorbis --enable-libvpx --enable-libx264 --enable-libx265 --enable-libxvid --enable-libzimg --enable-openssl --enable-zlib --enable-nonfree --extra-libs=-lpthread --enable-pthreads --extra-libs=-lgomp  
libavutil      58.  2.100 / 58.  2.100  
libavcodec     60.  3.100 / 60.  3.100  
libavformat    60.  3.100 / 60.  3.100  
libavdevice    60.  1.100 / 60.  1.100  
libavfilter     9.  3.100 /  9.  3.100  
libswscale      7.  1.100 /  7.  1.100  
libswresample   4. 10.100 /  4. 10.100  
libpostproc    57.  1.100 / 57.  1.100

这里安装的是最新版ffmpeg version 6.0

克隆代码库

接着克隆代码库:

#@title 克隆代码仓库  
!git clone https://github.com/v3ucn/Bert-vits2-V2.3.git

程序返回:

Cloning into 'Bert-vits2-V2.3'...  
remote: Enumerating objects: 234, done.  
remote: Counting objects: 100% (234/234), done.  
remote: Compressing objects: 100% (142/142), done.  
remote: Total 234 (delta 80), reused 232 (delta 78), pack-reused 0  
Receiving objects: 100% (234/234), 4.16 MiB | 14.14 MiB/s, done.  
Resolving deltas: 100% (80/80), done.

安装项目依赖

随后进入项目的目录,安装依赖:

#@title 安装所需要的依赖  
%cd /content/Bert-vits2-V2.3  
!pip install -r requirements.txt

下载必要的模型

新增单元格,下载模型:

#@title 下载必要的模型  
!wget -P slm/wavlm-base-plus/ https://huggingface.co/microsoft/wavlm-base-plus/resolve/main/pytorch_model.bin  
!wget -P emotional/clap-htsat-fused/ https://huggingface.co/laion/clap-htsat-fused/resolve/main/pytorch_model.bin  
!wget -P emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim/ https://huggingface.co/audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim/resolve/main/pytorch_model.bin  
!wget -P bert/chinese-roberta-wwm-ext-large/ https://huggingface.co/hfl/chinese-roberta-wwm-ext-large/resolve/main/pytorch_model.bin  
!wget -P bert/bert-base-japanese-v3/ https://huggingface.co/cl-tohoku/bert-base-japanese-v3/resolve/main/pytorch_model.bin  
!wget -P bert/deberta-v3-large/ https://huggingface.co/microsoft/deberta-v3-large/resolve/main/pytorch_model.bin  
!wget -P bert/deberta-v3-large/ https://huggingface.co/microsoft/deberta-v3-large/resolve/main/pytorch_model.generator.bin  
!wget -P bert/deberta-v2-large-japanese/ https://huggingface.co/ku-nlp/deberta-v2-large-japanese/resolve/main/pytorch_model.bin

下载底模文件

接着下载预训练模型的底模:

#@title 下载底模文件  !wget -P Data/ada/models/ https://huggingface.co/OedoSoldier/Bert-VITS2-2.3/resolve/main/DUR_0.pth  
!wget -P Data/ada/models/ https://huggingface.co/OedoSoldier/Bert-VITS2-2.3/resolve/main/D_0.pth  
!wget -P Data/ada/models/ https://huggingface.co/OedoSoldier/Bert-VITS2-2.3/resolve/main/G_0.pth  
!wget -P Data/ada/models/ https://huggingface.co/OedoSoldier/Bert-VITS2-2.3/resolve/main/WD_0.pth

注意2.3版本的底模是4个。

切分数据集

接着把艾达王的音频素材上传到Data/ada/raw/ada.wav

随后新建单元格:

#@title 切分数据集  !python3 audio_slicer.py

素材就会被切分。

转写和标注

此时我们需要把切片素材转写:

#@title 转写和标注  
!pip install git+https://github.com/openai/whisper.git  
!python3 short_audio_transcribe.py

注意这里单独安装whisper,很多人直接用 pip install whisper,其实这不是正确的安装方式,需要单独指定安装源:pip install git+https://github.com/openai/whisper.git,切记,否则会报错。

执行完毕后会在角色目录生成转写文件esd.list:

./Data\ada\wavs\ada_0.wav|ada|EN|I do. The kind you like.  
./Data\ada\wavs\ada_1.wav|ada|EN|Now where's the amber?  
./Data\ada\wavs\ada_10.wav|ada|EN|Leave the girl. She's lost no matter what.  
./Data\ada\wavs\ada_11.wav|ada|EN|You walk away now, and who knows?  
./Data\ada\wavs\ada_12.wav|ada|EN|Maybe you'll live to meet me again.  
./Data\ada\wavs\ada_13.wav|ada|EN|And I might get you that greeting you were looking for.  
./Data\ada\wavs\ada_14.wav|ada|EN|How about we continue this discussion another time?  
./Data\ada\wavs\ada_15.wav|ada|EN|Sorry, nothing yet.  
./Data\ada\wavs\ada_16.wav|ada|EN|But my little helper is creating  
./Data\ada\wavs\ada_17.wav|ada|EN|Quite the commotion.  
./Data\ada\wavs\ada_18.wav|ada|EN|Everything will work out just fine.  
./Data\ada\wavs\ada_19.wav|ada|EN|He's a good boy. Predictable.  
./Data\ada\wavs\ada_2.wav|ada|EN|The deal was, we get you out of here when you deliver the amber. No amber, no protection, Louise.  
./Data\ada\wavs\ada_20.wav|ada|EN|Nothing personal, Leon.  
./Data\ada\wavs\ada_21.wav|ada|EN|Louise and I had an arrangement.  
./Data\ada\wavs\ada_22.wav|ada|EN|Don't worry, I'll take good care of it.  
./Data\ada\wavs\ada_23.wav|ada|EN|Just one question.  
./Data\ada\wavs\ada_24.wav|ada|EN|What are you planning to do with this?  
./Data\ada\wavs\ada_25.wav|ada|EN|So, we're talking millions of casualties?  
./Data\ada\wavs\ada_26.wav|ada|EN|We're changing course. Now.  
./Data\ada\wavs\ada_3.wav|ada|EN|You can stop right there, Leon.  
./Data\ada\wavs\ada_4.wav|ada|EN|wouldn't make me use this.  
./Data\ada\wavs\ada_5.wav|ada|EN|Would you? You don't seem surprised.  
./Data\ada\wavs\ada_6.wav|ada|EN|Interesting.  
./Data\ada\wavs\ada_7.wav|ada|EN|Not a bad move  
./Data\ada\wavs\ada_8.wav|ada|EN|Very smooth. Ah, Leon.  
./Data\ada\wavs\ada_9.wav|ada|EN|You know I don't work and tell.

这里一共27条切片语音,对应27个转写文本,注意语言是英语。

音频重新采样

对素材音频进行重新采样的操作:

#@title 重新采样  
!python3 resample.py --sr 44100 --in_dir ./Data/ada/raw/ --out_dir ./Data/ada/wavs/

预处理标签文件

接着处理转写文件,生成训练集和验证集:

#@title 预处理标签文件  
!python3 preprocess_text.py --transcription-path ./Data/ada/esd.list --t

程序返回:

pytorch_model.bin: 100% 1.32G/1.32G [00:10<00:00, 122MB/s]   
spm.model: 100% 2.46M/2.46M [00:00<00:00, 115MB/s]  
The cache for model files in Transformers v4.22.0 has been updated. Migrating your old cache. This is a one-time only operation. You can interrupt this and resume the migration later on by calling `transformers.utils.move_cache()`.  
0it [00:00, ?it/s]  
[nltk_data] Downloading package averaged_perceptron_tagger to  
[nltk_data]     /root/nltk_data...  
[nltk_data]   Unzipping taggers/averaged_perceptron_tagger.zip.  
[nltk_data] Downloading package cmudict to /root/nltk_data...  
[nltk_data]   Unzipping corpora/cmudict.zip.  
100% 27/27 [00:00<00:00, 4457.63it/s]  
总重复音频数:0,总未找到的音频数:0  
训练集和验证集生成完成!

生成 BERT 特征文件

最后生成bert特征文件:

#@title 生成 BERT 特征文件  
!python3 bert_gen.py --config-path ./Data/ada/configs/config.json

对应27个素材:

100% 27/27 [00:33<00:00,  1.25s/it]  
bert生成完毕!, 共有27个bert.pt生成!

模型训练

万事俱备,开始训练:

#@title 开始训练  
!python3 train_ms.py

模型会在models目录生成,项目默认设置了训练间隔是50步,可以根据自己的需求修改config.json配置文件。

模型推理

一般情况下,训练了50步或者100步左右,可以推理一下查看效果,然后继续训练:

#@title 开始推理  
!python3 webui.py

返回:

| numexpr.utils | INFO | NumExpr defaulting to 2 threads.  
/usr/local/lib/python3.10/dist-packages/torch/nn/utils/weight_norm.py:30: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.  warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.")  
| utils | INFO | Loaded checkpoint 'Data/ada/models/G_150.pth' (iteration 25)  
推理页面已开启!  
Running on local URL:  http://127.0.0.1:7860  
Running on public URL: https://814833a6f477ba151c.gradio.live

点击第二个公网地址进行推理即可。

结语

至此,我们已经完成了基于JupyterNoteBook的数据切分、转写、预处理、训练以及推理流程。最后奉上线上GoogleColab,以飨众乡亲:

https://colab.research.google.com/drive/1-H1DGG5dTy8u_8vFbq1HACXPX9AAM76s?usp=sharing

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/580991.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

视频格式网络地址转换视频到本地,获取封面、时长,其他格式转换成mp4

使用ffmpeg软件转换网络视频&#xff0c;先从官网下载对应操作系统环境的包 注意:网络地址需要是视频格式结尾&#xff0c;例如.mp4,.flv 等 官网地址&#xff1a;Download FFmpeg window包&#xff1a; linux包&#xff1a; 如果下载缓慢&#xff0c;下载迅雷安装使用…

Pycharm2023版本:Python远程调试配置详解

工欲善其事&#xff0c;必先利其器 首先你需要选择一个专业版本的pycharm&#xff0c;社区版本不支持远程配置功能&#xff0c;专业版下载地址&#xff1a;Pycharm 2023 双击程序进行安装&#xff0c;30天内免费试用&#xff0c;如果想要永久使用&#xff0c;办法你懂的&…

GBASE南大通用 GCDW阿里云计算巢:自动化部署云原生数据仓库

目前&#xff0c;GBASE南大通用已与阿里云计算巢合作&#xff0c;双方融合各自技术优势&#xff0c;助力企业用户实现云上数据仓库的自动化部署&#xff0c;让用户在云端获取数据仓库服务“更简单”&#xff0c;让用户在云端使用数据仓库服务“更便捷”&#xff0c;满足企业用户…

uniapp 安卓模拟器链接

下载genymotion 安装 配置adb路径 模拟端口设为 5307

数据库系统课程设计(高校成绩管理数据库系统的设计与实现)

目录 1、需求分析 1 1.1 数据需求描述 1 1.2 系统功能需求 3 1.3 其他性能需求 4 2、概念结构设计 4 2.1 局部E-R图 4 2.2 全局E-R图 5 2.3 优化E-R图 6 3、逻辑结构设计 6 3.1 关系模式设计 6 3.2 数据类型定义 6 3.3 关系模式的优化 8 4、物理结构设计 9 4.1 聚…

CSDN规则详解——csdn那些你不知道的事儿(点赞、评论、收藏)

文章目录 每日一句正能量前言点赞评论收藏原力等级和博客等级后记 每日一句正能量 “只有奋斗者才能成为胜利者&#xff0c;只有坚持者才能创造奇迹。” - 迈克尔乔丹 这句话来自于世界著名篮球运动员迈克尔乔丹&#xff0c;他以无与伦比的天赋和努力成为了篮球界的传奇人物。他…

基于ChatGpt,Java,SpringBoot,Vue,Milvus向量数据库的定制化聊天Web demo

customized chat GitHub - bigcyy/customized-chatgpt: 基于ChatGpt&#xff0c;Java&#xff0c;SpringBoot&#xff0c;Vue&#xff0c;Milvus向量数据库的定制化聊天Web demo 简介 基于ChatGpt&#xff0c;Java&#xff0c;SpringBoot&#xff0c;Vue&#xff0c;Milvus向…

模式识别与机器学习-SVM(线性支持向量机)

线性支持向量机 线性支持向量机间隔距离学习的对偶算法算法:线性可分支持向量机学习算法线性可分支持向量机例子 谨以此博客作为复习期间的记录 线性支持向量机 在以上四条线中&#xff0c;都可以作为分割平面&#xff0c;误差率也都为0。但是那个分割平面效果更好呢&#xff1…

Java文件操作实现doc格式转pdf

使用场景 在进行生成文档或者报告的时候&#xff0c;生成的word想要转换为pdf格式&#xff0c;这样才能保证报告的不可修改性&#xff0c;但是aspose-words的工具的License令人头疼&#xff0c;这篇文章就是解决这个doc转pdf的License的问题。话不多说&#xff0c;直接上实操。…

箭头函数的泛型,typescript中怎么写

TypeScript——泛型&#xff08;函数泛型、模板类型可以是多个、泛型的错误、泛型函数变量、泛型函数类型接口、泛型类1、泛型类2、泛型约束、泛型参数的默认类型&#xff09;、声明文件、Vue3.0集成ts_typescript 泛型函数-CSDN博客

【C语言】自定义类型:结构体深入解析(三)结构体实现位段最终篇

文章目录 &#x1f4dd;前言&#x1f320;什么是位段&#xff1f;&#x1f309; 位段的内存分配&#x1f309;VS怎么开辟位段空间呢&#xff1f;&#x1f309;位段的跨平台问题&#x1f320; 位段的应⽤&#x1f320;位段使⽤的注意事项&#x1f6a9;总结 &#x1f4dd;前言 本…

月薪高达6W,多家大厂急招鸿蒙开发工程师,现在转还来得及吗?

近期&#xff0c;“安卓版本与鸿蒙不再兼容”的词条登上微博热搜&#xff0c;华为鸿蒙加速按下向“纯血鸿蒙”蜕变的启动键&#xff0c;欲与 iOS、安卓在市场三分天下。 一批嗅觉灵敏的互联网大厂&#xff0c;已经完成或开始启动开发鸿蒙原生 APP&#xff0c;也于近期发布了和…

Java之ThreadLocal 详解

ThreadLocal 详解 原文地址&#xff1a;https://juejin.cn/post/6844904151567040519open in new window。 什么是ThreadLocal&#xff1f; ThreadLocal提供线程局部变量。这些变量与正常的变量不同&#xff0c;因为每一个线程在访问ThreadLocal实例的时候&#xff08;通过其…

视频流媒体直播云服务管理平台EasyNVS长时间运行出现崩溃情况是什么原因?该如何解决?

EasyNVS云管理平台具备汇聚与管理EasyGBS、EasyNVR等平台的能力&#xff0c;可以将接入的视频资源实现统一的视频能力输出&#xff0c;支持远程可视化运维等管理功能&#xff0c;还能解决设备现场没有固定公网IP却需要在公网直播的需求。 有用户反馈&#xff0c;在长时间不间断…

CGAL的D维范围树和线段树

范围树和线段树是两种数据结构&#xff0c;用于高效地处理和查询数据。 范围树&#xff08;Range Tree&#xff09;是一种二叉树&#xff0c;它通过递归地将每个节点分割成两个子节点来存储一个点集。每个节点表示一个范围&#xff0c;并且存储该范围内所有点的最小和最大值。范…

静物摄影在UE5里运用几点记要

被摄体&#xff0c;相机与光源的关系&#xff0c;要增强立体感&#xff0c;摄像机与光源的位置关系要错开&#xff1b;b的立体感要更强 漫反射与点光源&#xff0c;UE5太阳光属于漫反射&#xff0c;整体比较柔和&#xff0c;但是阴影处比较黑&#xff1b;摄影棚会用反光板来增亮…

【模型】模型量化技术:动态范围、全整数和Float16量化

目录 一 动态范围量化 二 全整数量化 三 float16量化 通常&#xff0c;表示神经网络的数据类型是32位浮点数&#xff08;float32&#xff09;&#xff0c;这种数据类型可以提供高精度的计算&#xff0c;但是在计算资源和存储空间有限的设备上运行神经网络时&#xff0c;会带…

SpringBoot 异步编程浅谈

1. 需求背景 当我们需要提高系统的并发性能时&#xff0c;我们可以将耗时的操作异步执行&#xff0c;从而避免线程阻塞&#xff0c;提高系统的并发性能。例如&#xff0c;在处理大量的并发请求时&#xff0c;如果每个请求都是同步阻塞的方式处 理&#xff0c;系统的响应时间会…

Git使用教程 gittutorial

该教程对该文章的翻译&#xff1a;https://git-scm.com/docs/gittutorial 本文介绍怎用使用 Git 导入新的工程、修改文件及如何其他人同步开发。 首先&#xff0c; 可以使用以下指令获取文档帮助 git help log笔者注&#xff1a;不建议看这个文档&#xff0c;标准的语法介绍…

FreeRTOS的学习

1.创建函数和删除 动态创建为FreeRTOS分配的堆栈&#xff08;方便&#xff09;&#xff0c;而静态创建为人为分配空间。动态应用多任务中必须有while&#xff08;1&#xff09;否则只会执行一次任务中的延时要用 vTaskDelay(500); 延时期间执行其它任务 任务中的延时使…