学习笔记:数据挖掘与机器学习

文章目录

  • 一、数据挖掘、机器学习、深度学习的区别
    • (一)数据挖掘
    • (二)机器学习
    • (三)深度学习
    • (四)总结
  • 二、数据挖掘体系
  • 三、数据挖掘的流程
  • 四、典型的数据挖掘系统

一、数据挖掘、机器学习、深度学习的区别

(一)数据挖掘

  • 数据挖掘,或者说Data Mining,是一个涵盖广泛且充满活力的学术领域,其核心目标在于揭示隐藏在海量数据背后的有价值信息和知识。这一过程涵盖了多种方法和技术,包括但不限于商业智能(BI)、统计分析、大数据处理技术以及市场运营策略。

  • 在实际应用中,数据挖掘的工作形式多样,可以是通过复杂的BI工具对数据进行深度剖析,也可以是运用统计学原理对数据进行精细化解读。甚至,简单的Excel数据分析,只要能从中发现有助于业务决策的信息和规律,都可以被视为数据挖掘的一种表现形式。

  • 随着科技的发展,机器学习算法模型在数据挖掘中的应用越来越普遍。这些模型能够自动学习数据的内在规律,并通过分类、聚类、回归等手段提取出有价值的信息。例如,在互联网广告领域,通过机器学习算法对PB级别的点击日志进行分析,可以构建出预测点击率的模型,从而提高广告的效果和回报率。在个性化推荐系统中,机器学习算法通过对用户行为数据的深入分析,能够精准预测用户的喜好,提供个性化的商品或服务推荐。

  • 总的来说,数据挖掘是一个多元化、综合性强的领域,其目标是借助各种工具和技术,从大规模数据中挖掘出有价值的信息和知识,为业务决策、产品研发、市场营销等提供有力的支持和指导。而在这个过程中,机器学习算法模型以其强大的自动化学习和预测能力,成为了现代数据挖掘不可或缺的重要工具。

(二)机器学习

  • 机器学习,这一术语源于计算机科学和统计学的深度融合,是一门致力于研究和开发算法的交叉学科,其核心目标是通过学习从输入数据(x)到输出结果(y)的映射函数,以实现诸如分类、聚类、回归等复杂任务。由于其强大的数据处理和模式识别能力,机器学习在众多领域中都展现出了不可替代的作用。

  • 特别是在数据挖掘领域,机器学习的应用尤为广泛且关键。许多数据挖掘的工作流程和解决方案都是借助于机器学习所提供的各种算法工具得以实现的。例如,在互联网广告行业中,通过运用机器学习技术对海量的用户点击数据进行分析和建模,可以精准预估广告的点击率(CTR),从而优化广告投放策略,提高点击率和投资回报率。

  • 另一方面,个性化推荐也是机器学习在数据挖掘中的一大应用实例。通过深入分析用户的购买历史、浏览行为和收藏记录等数据,机器学习算法能够构建出高度个性化的推荐模型,准确预测用户可能感兴趣的商品或服务,大幅提升用户体验和商业效益。

  • 总的来说,机器学习以其强大的数据处理能力和智能化的决策支持,在数据挖掘领域发挥着至关重要的作用。无论是提升广告效果、优化推荐系统,还是解决其他各种数据驱动的问题,机器学习都为我们提供了强大而有效的工具和方法。随着数据量的持续增长和计算能力的不断提升,我们有理由相信,机器学习在数据挖掘领域的应用将更加深入和广泛。

(三)深度学习

  • 深度学习,又称Deep Learning,是机器学习领域中一个备受瞩目和迅速发展的分支。它本质上是对传统神经网络算法的一种革新和深化,通过模拟人脑神经元的工作原理,构建多层非线性处理单元,实现对复杂数据的高效学习和理解。

  • 在深度学习的框架下,算法模型能够自动从原始数据中提取高级特征,并逐步构建出越来越抽象的表示。这一特性使得深度学习在处理图像、语音等富媒体信息时表现出卓越的性能。例如,在图像分类和识别任务中,深度学习模型能够通过卷积神经网络(CNN)捕捉到图像中的细微纹理和形状特征,从而准确区分不同的物体类别。在语音识别方面,长短期记忆网络(LSTM)等递归神经网络结构则能够有效处理语音的时间序列特性,实现高精度的语音转文字转化。

  • 由于其在处理复杂问题上的出色表现,深度学习吸引了全球众多顶级研究机构和科技公司的广泛关注和投入。无论是学术界的基础理论研究,还是工业界的实际应用开发,深度学习都展现出了巨大的潜力和价值。目前,深度学习已经被广泛应用于诸如自动驾驶、医疗诊断、金融风控、自然语言处理等诸多领域,不断推动着人工智能技术的进步和发展。随着计算能力的提升和数据量的增长,深度学习的影响力和应用范围有望进一步扩大,为人类社会带来更多的创新和变革。

(四)总结

  • 数据挖掘、机器学习和深度学习是现代数据分析领域的三大关键技术。数据挖掘旨在从海量数据中揭示有价值信息,涉及多种方法如BI、统计分析和市场运营策略,而机器学习算法模型的广泛应用使其成为数据挖掘的重要工具。机器学习通过学习输入到输出的映射函数,实现分类、聚类、回归等任务,在数据挖掘中起到关键作用,如优化广告效果和个性化推荐。深度学习作为机器学习的分支,通过模拟神经元工作原理处理复杂数据,尤其在图像、语音等领域表现出色。随着技术的发展,这三种技术将在更多领域展现其价值,推动人工智能的进步和社会的创新变革。

二、数据挖掘体系

  • 业界数据挖掘方法论

在这里插入图片描述

  • 数据挖掘的体系是一个综合且多元的知识领域,它深度融合了多个学科和技术领域的精华。首先,统计学在数据挖掘中扮演着至关重要的角色,通过运用各种统计理论和方法,数据挖掘能够从大量数据中发现并验证模式、趋势和关联。

  • 其次,数据库系统和数据仓库是数据挖掘的基础支撑。数据库系统用于存储和管理数据,而数据仓库则专门设计用于支持决策分析,它们为数据挖掘提供了稳定可靠的数据源。

  • 信息检索技术在数据挖掘中也发挥着重要作用,它帮助我们在海量数据中快速准确地找到所需信息,这对于提升数据挖掘的效率和精度至关重要。

  • 机器学习作为数据挖掘的核心工具,通过一系列算法模型自动学习数据的内在规律,并通过分类、聚类、回归等手段提取出有价值的信息和知识。

  • 应用领域则是数据挖掘的实际落地,包括但不限于市场营销、金融风控、医疗诊断、社交网络分析等,数据挖掘的应用极大地推动了这些领域的创新和发展。

  • 模式识别是数据挖掘中的关键技术之一,它旨在从数据中自动识别和提取具有意义的模式和结构。

  • 可视化是数据挖掘的重要组成部分,通过图表、图像等形式将复杂的数据和分析结果呈现出来,使得非专业人员也能理解和利用数据挖掘的结果。

  • 算法是数据挖掘的灵魂,包括关联规则学习、聚类分析、决策树、神经网络等各种算法,它们是实现数据挖掘功能的关键手段。

  • 高性能计算,特别是分布式计算和GPU计算,为处理大规模数据和复杂算法提供了强大的计算能力,使得数据挖掘能够在短时间内处理和分析海量数据。

  • 综上所述,数据挖掘的体系是一个涵盖了统计学、数据库系统、数据仓库、信息检索、机器学习、应用、模式识别、可视化、算法、高性能计算等多个领域的综合性知识体系,这些元素相互融合、相互促进,共同推动了数据挖掘技术的发展和应用。

三、数据挖掘的流程

  • 目前,越来越多的人认为数据挖掘应该被视为一种知识发现过程(KDD:Knowledge Discovery in Database)。
    在这里插入图片描述
  • KDD(Knowledge Discovery in Databases)过程是一个系统化、迭代的序列,旨在从大量数据中挖掘出有价值的知识和模式。
  1. 数据清理:这是数据挖掘的第一步,其目标是消除数据中的噪声和删除不一致的数据。噪声可以是由于数据采集错误、设备故障或其他原因导致的异常值或错误记录。不一致数据可能是由于数据源的不同、数据录入错误或者数据更新不及时等原因造成的。数据清理阶段需要对数据进行预处理,确保后续分析的准确性和可靠性。

  2. 数据集成:在实际应用中,数据往往来自多个不同的数据源。数据集成阶段的目标是将这些数据源组合在一起,形成一个统一的数据视图。这可能涉及到数据格式的转换、数据冲突的解决以及数据冗余的消除等问题。

  3. 数据选择:数据选择阶段的目标是从数据库中提取与分析任务相关的数据。这可能涉及到对数据字段的选择、数据子集的抽取以及数据过滤等操作。数据选择阶段的目的是减少数据的维度,提高数据挖掘的效率和效果。

  4. 数据变换:数据变换阶段的目标是通过汇总或聚集操作,将数据变换和统一成适合挖掘的形式。这可能包括数据规范化、数据标准化、数据离散化以及数据聚类等操作。数据变换的目的是使得数据满足算法模型的输入要求,同时也可以提高数据挖掘的精度和稳定性。

  5. 数据挖掘:数据挖掘阶段是KDD过程的核心环节,其目标是使用一定的模型算法提取数据模式。这可能包括分类、聚类、关联规则、序列模式、异常检测等多种数据挖掘任务。数据挖掘阶段需要选择合适的算法模型,并调整参数以优化模型的性能。

  6. 模式评估:模式评估阶段的目标是根据某种兴趣度度量,识别代表知识的真正有趣的模式。这可能涉及到模式的筛选、排序、验证以及解释等操作。模式评估的目的是确保挖掘出来的模式具有实际意义和价值。

  7. 知识表示:知识表示阶段的目标是使用可视化和知识表示技术,向用户提供挖掘的知识。这可能包括图表、报表、仪表盘等多种形式。知识表示的目的是使得用户能够理解和利用挖掘出来的知识,从而支持决策和行动。

  • 总结来说,数据挖掘是从大量数据中挖掘有趣模式和知识的过程。在这个过程中,数据清理、数据集成、数据选择、数据变换、数据挖掘、模式评估和知识表示等步骤相互交织、相互依赖,共同构成了KDD过程的完整链条。从算法模型的角度来看,数据挖掘主要依赖于统计学和机器学习算法来实现。统计学提供了丰富的理论和方法来描述和分析数据的分布、关联和趋势,而机器学习则提供了一系列强大的工具和模型来自动学习和预测数据的规律和模式。通过结合这两种方法,数据挖掘可以有效地发现和利用数据中的价值和知识,为各种领域和应用提供有力的支持和指导。

四、典型的数据挖掘系统

  • 典型的数据挖掘系统主要包括以下几种:
  1. WEKA:WEKA是一款开源的数据挖掘工具,它提供了丰富的数据预处理、分类、聚类、回归、关联规则学习等算法。WEKA的用户界面友好,支持多种数据格式,适合科研和教学使用。
  • Weka学习笔记01:初探Weka世界
  • Weka学习笔记02:数据准备
  • Weka学习笔记03:基于关联规则的数据挖掘
  1. RapidMiner:RapidMiner是一款商业化的数据挖掘软件,它提供了全面的数据挖掘功能,包括数据预处理、可视化、机器学习、深度学习等。RapidMiner具有直观的图形化界面和强大的编程能力,适用于企业级的数据分析和预测。

  2. SAS Enterprise Miner:SAS Enterprise Miner是SAS公司推出的一款高级数据挖掘工具,它集成了数据清洗、探索性分析、预测模型构建、模型评估和部署等功能。SAS Enterprise Miner适用于大型企业的复杂数据分析和决策支持。

  3. IBM SPSS Modeler:IBM SPSS Modeler是一款强大的数据挖掘和预测分析软件,它提供了拖放式的工作流界面和丰富的算法库,支持数据预处理、分类、聚类、关联规则、序列发现等多种任务。IBM SPSS Modeler适用于各种行业和应用场景的数据分析。

  4. KNIME:KNIME是一款开源的数据科学平台,它提供了数据集成、数据预处理、机器学习、深度学习、可视化等模块。KNIME支持灵活的工作流设计和扩展插件机制,适用于科研和企业级的数据分析。

  • 这些典型的数据挖掘系统各有特点和优势,可以根据实际需求和应用场景选择合适的数据挖掘工具。同时,随着大数据和人工智能技术的发展,新的数据挖掘系统和工具也在不断涌现,为数据挖掘领域的研究和应用提供了更多的可能性和机遇。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/580840.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023:代码岁月如歌,技术之路踏实前行

前言 转眼之间,2023年即将谢幕,这一年对于我而言充满了挑战、收获与成长。在这篇博客中,我将分享我在技术领域的一些心得体会,以及在项目和职场中的所思所感。愿这些文字能够为你带来启发,同时让我能够在反思中更进一…

Vuex状态管理(报警信息数量跟随变化)

需求:侧边栏显示报警信息数量 在store/project.js文件中定义相关状态 // 存储项目信息 const projectInfo JSON.parse(sessionStorage.getItem(projectInfo)) ? JSON.parse(sessionStorage.getItem(projectInfo)) : ; import { getUntreatedProjectAlarm } from …

Qt Creator可视化交互界面exe快速入门4

上一期介绍了信号与槽,本期介绍加法计算器 我们来新建一个项目 然后拖动设置按钮 还需要个输出框 这里拖动Line Edit 我这里只是简单演示一下,做个低配版计算器,再加个加号和一个等于号就结束了。 然后回到代码编辑部分,我们需要…

VGG网络分析与demo实例

参考自 up主的b站链接:霹雳吧啦Wz的个人空间-霹雳吧啦Wz个人主页-哔哩哔哩视频这位大佬的博客 Fun_机器学习,pytorch图像分类,工具箱-CSDN博客 VGG 在2014年由牛津大学著名研究组 VGG(Visual Geometry Group)提出,斩获该年 Imag…

Java 新手常踩得坑,清个缓存就解决了?

【IDEA教程】IDEA 如何清除缓存? 大家好,我是 JavaPub。 最近遇到群里小伙伴遇到一个很大的难题,相信这个问题很多人在初入行时都遇到过。 事情是这样,一个小伙伴刚入职一家公司,公司给了他一个任务,虽然…

公司使用了加密软件,文件无法复制

在当今数字化时代,企业面临着越来越多的数据泄露和信息安全威胁。为了保护公司的敏感信息和知识产权,许多企业选择使用加密软件来加强数据的安全性。其中一项重要的功能是防止未经授权的文件复制。本文将探讨公司使用加密软件后,为何文件无法…

枚举算法:解决问题的穷举之道(二)

💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…

macOS系统下载安装PyCharm社区版本的流程(详细)

第一步 进入PyCharm官网,链接:Get Your Educational Tool - JetBrains 第二步 选择下拉框,根据自己的电脑芯片选择下载版本(芯片查看位置:设置-通用-关于本机)然后点击Download按钮 ​​​​​​​ -- 第…

科研学习|论文解读——融合类目偏好和数据场聚类的协同过滤推荐算法研究

论文链接(中国知网): 融合类目偏好和数据场聚类的协同过滤推荐算法研究 - 中国知网 (cnki.net) 摘要:[目的/意义]基于近邻用户的协同过滤推荐作为推荐系统应用最广泛的算法之一,受数据稀疏和计算可扩展问题影响&#x…

005.HCIA 传输层

传输层定义了主机应用程序之间端到端的连通性。传输层中最为常见的两个协议分别是传输控制协议TCP (Transmission Control Protocol)和用户数据包协议UDP (User Datagram Protocol)。 1、相关概念 a. 传输层的端口 端口范围:0-65535 知名端口:0-1023&…

图灵日记之java奇妙历险记--类和对象

目录 类的定义和使用类的定义格式 类的实例化类和对象的说明 this引用this引用的特性 对象的构造及初始化就地初始化构造方法 封装包导入包中的类自定义包 static成员static修饰成员变量static修饰成员方法 代码块代码块概念及分类构造代码块静态代码块 匿名对象 类的定义和使用…

运维工程师的出路到底在哪里

运维工程师的出路到底在哪里? 你是不是也常常听到身边的运维人员抱怨,他们的出路到底在哪里呢?别着急,让我告诉你,运维人员就像是IT界的“万金油”,他们像“修理工”一样维修服务器,像“消防员…

sleep(0)、sleep(1)与sleep(1000)函数是不是很迷?!

随着计算机科学和软件开发的飞速发展,开发者们常常需要在程序中引入一些时间控制的手段。其中,sleep函数成为了一种常见的工具,用于控制程序的执行速度、等待异步操作完成或者调度多线程任务。在这篇博客中,我们将深入研究三种睡眠…

安装、卸载、使用docker-compose

文章目录 Docker Compose一、安装Docker Compose二、卸载Docker Compose三、 使用docker compose编排nginxspringboot项目 Docker Compose 一、安装Docker Compose # Compose目前已经完全支持Linux、Mac OS和Windows,在我们安装Compose之前,需要先安装D…

在word文档中插入Latex格式的公式

用此方法可以不用在word中一点点插入公式,直接用Latex版的公式代码生成公式。 1.获取latex版公式 如我要在word中插入画框的公式,左边是该公式的latex版 也可以对公式截图使用如下的网页将公式的截图转为latex版 https://simpletex.cn/ai/latex_ocr …

Vue3超详细的ref()用法,看这一篇就够了

ref( ) 接受一个内部值,返回一个ref 对象,这个对象是响应式的、可更改的,且只有一个指向其内部值的属性 .value。 ref() 将传入参数的值包装为一个带 .value 属性的 ref 对象。 1、ref 对象是可更改的,即可以为 .value 赋予新的值…

Twinmotion教育版下载 / 找不到教育版解决方法

首先,在Epic Game Launcher中,找到Twinmotion标签 其中只有默认的试用版,没有教育版 众所周知,试用版没有相应的部分导出功能,而且有水印。 下载教育版: 1.打开官网:A cutting-edge real-time…

vue前端上传图片到阿里云OSS,超详细上传图片与视频教程

vue前端直传图片与视频到阿里云OSS 1. 简介与日常使用2. 为什么要这么干?是因为我司后端不行吗???(确实!)3. vue前端直传的操作4. 如何上传到阿里OSS指定文件夹呢? 1. 简介与日常使用 阿里云…

python高级(补充)

闭包 闭包的定义: 在函数嵌套的前提下,内部函数使用了外部函数的变量,并且外部函数返回了内部函数,我们把这个使用外部函数变量的内部函数称为闭包 通过闭包的定义,我们可以得知闭包的形成条件: 1- 在函数嵌套(函数里面再定义…

【node-express】实现省县市/区三级联动接口

省县市/区三级联动接口 介绍接口步骤代码部分 介绍 源码地址:https://github.com/thinkasany/nestjs-course-code/tree/master/demo/address 使用 navicat 导入sql文件,新增表,然后只需要一个接口 localhost:3001/region?parentId1, 不断的…