[Ray Tracing: The Next Week] 笔记

前言

本篇博客参照自《Ray Tracing: The Next Week》教程,地址为:https://raytracing.github.io/books/RayTracingTheNextWeek.html

该教程在ray tracing in one weekend的基础上,增加了运动模糊、BVH树、Texture映射、柏林噪声、光照、体积渲染等内容。

渲染器的构建过程

与我的上一篇系列笔记类似,我会顺序罗列我认为重要的部分。

运动模糊

这一点和散焦模糊有些类似,也是模仿真实相机拍摄到的现象,即,当相机的快门按下时,运动的物体会发生模糊。

要实现这一点,方法是,在发射采样光线时,令光线在快门的这一段时间内随机发射,再混合采样结果。为光线增加了一个时间t属性。

于此同时,为场景种添加相应的运动物体,比如运动的球体,在1秒的时间内,球体会在某一个方向上移动。这时,因为光线包含时间属性,t时刻的光线r会打到在该时刻对应位置的物体表面上。

最后渲染时,则是将在快门这一时间段内所有的光线追踪结果混合。

以下是运动模糊的渲染结果:

在这里插入图片描述

BVH树

BVH树是一种空间划分的数据结构,可以有效提高光线与物体求交的效率。

在该教程中,BVH树的建立分为以下几步:

  1. 将所有图元包裹在一个大的包围盒中。

  2. 进行BVH树的划分。

  3. 一直分到BVH树的叶子节点只有一个图元为止。

作者在划分BVH树时,不希望留下空子树的问题,因此,在划分子树时,若当前只剩下一个图元,文中会令这个图元既属于左子树又属于右子树。另外,在划分过程中,对于[begin, end]范围内的图元,中点为mid,文中会将[begin, mid]划归左子树,[mid, end]划归右子树,相当于mid这个位置的图元既属于左子树又属于右子树。这种划分方式属于作者的喜好,有它的优势。

一个BVH树的例子如下:

在这里插入图片描述

包围盒

BVH树采用的包围盒应当便于计算相交,且紧密,AABB包围盒符合这个条件。

三维场景内的AABB包围盒为包含目标图元,且边平行于坐标轴的最小六面体。

如何计算射线与AABB包围盒的相交?拿二维场景举例,如下图所示,射线在与x的两个边界相交时,对应的相交位置为t1、t2,射线在与y的两个边界相交时,对应的相交位置为t3、t4,如果射线与这个2D AABB包围盒相交,则t1、t2与t3、t4 的范围重叠。

在这里插入图片描述

三维空间中与上述类似,当射线与x、y、z方向的对应平面相交时,如果范围有重合,则说明射线与包围盒相交。

如何求解射线与对应平面的交点?因为边界都是轴对齐的,将射线的方程带入对应边界的x、y或z值即可。

BVH树的划分

BVH树的划分主要分为三个步骤:

  1. 随机选择一个轴
  2. 对BVH树种的图元进行排序
  3. 对这些图元进行二分,构建子BVH树

文中给出的方法是每次随机选出一个轴,当然也可以轮流选择x、y、z轴。在排序时,依据的排序规则是每个图元对应轴的最小值。在C++中,可以构建box_x_compare、box_y_compare、box_z_compare,然后调用sort方法对数组进行排序。

最终,按照文中给出的BVH树构建方法,光线追踪的渲染过程有所加速。

纹理映射

在光线追踪中,纹理映射是一个反向寻找的过程,即通过射线与物体的交点,反向推算出交点在纹理中的颜色、凹凸等其他属性。这和光栅化不同,光栅化是通过纹理获得物体所有表面的颜色等属性,然后通过光栅化的过程投射给图像。

文中介绍了几种纹理,分别是纯色纹理、空间纹理、以及利用uv坐标的纹理。

纯色纹理。与uv坐标和空间坐标都无关,利用纯色纹理的材质,物体表面的所有颜色都一样。

空间纹理。采样和物体表面的空间坐标有关,和uv坐标无关,即物体表面某一点的颜色由该点的世界坐标(x, y, z)计算得出。

方格纹理就是一种空间纹理,对于任意一点,其颜色的计算是这样的:对于坐标(x, y, z),首先向下取整,得到三个整数结果(⌊x⌋,⌊y⌋,⌊z⌋),将这三个结果相加并进行模2运算,得到0或1。如果结果为0将映射到偶数颜色,如果结果为1将映射到奇数颜色。

方格纹理的一个例子如下:

在这里插入图片描述

利用uv坐标的纹理。需要知道如何根据物体表面的三维坐标,计算uv纹理坐标,再利用纹理坐标做颜色运算。因为场景中目前提供的模型都是球体,且目前也不涉及旋转,因此这里的uv坐标直接沿着球面计算。

球面的uv坐标用经纬度表示,其中u = Φ / 2π,v = θ / π,Φ为对应点在单位球中的经度,θ为对应点在单位球中的纬度。球面上点的三维关系与经纬度的关系如下:
y = − c o s ( θ ) x = − c o s ( ϕ ) s i n ( θ ) z = s i n ( ϕ ) s i n ( θ ) y = -cos(\theta)\\ x = -cos(\phi)sin(\theta)\\ z = sin(\phi)sin(\theta) y=cos(θ)x=cos(ϕ)sin(θ)z=sin(ϕ)sin(θ)
从而可得
ϕ = a t a n 2 ( − z , x ) + π θ = a r c c o s ( − y ) \phi = atan2(-z, x) + \pi\\ \theta = arccos(-y) ϕ=atan2(z,x)+πθ=arccos(y)
注意,这里因为atan2的数值范围为-π到π,但是为了让u映射到[0, 1]范围,需要加上一个π。

利用uv坐标的纹理效果如下:

在这里插入图片描述

柏林噪声

柏林噪声是一种自然噪声生成算法。文中主要利用柏林噪声生成空间纹理。

教程中一步步地给出3D柏林噪声的迭代改进过程。

第零次迭代,按照上述方格纹理的思路,首先生成一个大小为256的double数组ranfloat,其中的每个值为从0到1的随机。对于物体表面的每一个点,根据其三维坐标(x, y, z),得出一个指向ranfloat的下标,并根据这个下标,计算出方格的灰阶。其计算代码如下:

int i = static_cast<int>(4 * x) % 256;
int j = static_cast<int>(4 * y) % 256;
int k = static_cast<int>(4 * z) % 256;int index = i ^ j ^ k;
double grayscale = ranfloat[index];

这一步可以得出一种类似瓦片的效果,这种纹理是重复的。

在这里插入图片描述

第一次迭代,在上述瓦片贴图的基础上,加一些随机,具体到计算,主要是对上述代码中的i,j,k进行随机。这一部分的计算代码如下:

static int* perlin_generate_perm(){int p = new int[256];for(int i = 0;i<256;i++) p[i] = i;for(int i = 255;i>0;i--){int target = random_int(0, i); // 返回一个[0, i]范围的整数swap(p[i], p[target]);}return p;
}
// noise函数内部
{...int* perm_x = perlin_generate_perm();int* perm_y = perlin_generate_perm();int* perm_z = perlin_generate_perm();i = perm_x[i];j = perm_y[j];k = perm_z[k];...
}

这一步的纹理效果:

在这里插入图片描述

第二次迭代,在生成噪声时,进行线性插值。这一步是将一个点周围8个位置的值做平均加权运算,得出当前位置的灰阶。其核心计算代码如下:

static double trilinear_interp(double c[2][2][2], double u, double v, double w){double accum = 0.0;for (int i=0; i < 2; i++)for (int j=0; j < 2; j++)for (int k=0; k < 2; k++)accum += (i*u + (1-i)*(1-u))*(j*v + (1-j)*(1-v))*(k*w + (1-k)*(1-w))*c[i][j][k];return accum;
}// noise函数内部
{...int u = x - floor(x); // floor为向下取整运算int v = y - floor(y);int w = z - floor(z);int i = static_cast<int>(floor(x));int j = static_cast<int>(floor(y));int k = static_cast<int>(floor(z));double c[2][2][2];for(int di=0;di < 2;di++){for(int dj=0;dj<2;dj++){for(int dk=0;dk<2;dk++){c[di][dj][dk] = ranfloat[perm_x[(i+di) % 256] ^perm_y[(j+dj) % 256] ^perm_z[(k+dk) % 256]];}}}double grayscale = trilinear_interp(c, u, v, w);...
}

此时得出的结果:

在这里插入图片描述

第三次迭代,采用Hermitian插值,而不是线性插值来得到uvw的值,让结果更平滑,消除上述明显的网格特征。添加代码:

u = u*u*(3-2*u);
v = v*v*(3-2*v);
w = w*w*(3-2*w);

这一步得出的结果:

在这里插入图片描述

第四次迭代,调整噪声贴图的频率,方法就是将一个比例系数scale乘以(x, y, z)坐标值,scale越大,频率就越大。我的理解是,这种噪声的生成有一个模式,每经过一定的间隔就会得出相似的噪声结果。把坐标值增大,再来采样,等效于将模式的间隔缩小,这样导致的结果便是噪声图看起来频率更高。

这一步得出的效果如下:

在这里插入图片描述

第五次迭代,上面的结果看起来仍然有些块状,或许是因为这种模式的最小值和最大值总是恰好落在(x, y, z)都为整数的坐标上。因为当(x, y, z)为整数时,u, v, w的值均为0,此时trilinear_interp的结果为c[0][0][0],等于这个点没有和周围做平均运算。

可以用随机vec3数组ranvec代替之前的随机double数组ranfloat进行采样。在加权平均时,用权重向量和周围点的随机向量做点积,累加获得当前点的采样值。这样可以避免最小和最大值总是恰好落在整数坐标上。由于乘出来的值有可能小于零,需要做0.5 * (grayscale + 1.0)的归一化操作。

这一步的核心代码如下:

static double perlin_interp(vec3 c[2][2][2], double u, double v, double w) {double uu = u*u*(3-2*u);double vv = v*v*(3-2*v);double ww = w*w*(3-2*w);double accum = 0.0;for (int i=0; i < 2; i++)for (int j=0; j < 2; j++)for (int k=0; k < 2; k++) {vec3 weight_v(u-i, v-j, w-k);accum += (i*uu + (1-i)*(1-uu))* (j*vv + (1-j)*(1-vv))* (k*ww + (1-k)*(1-ww))* dot(c[i][j][k], weight_v);}return accum;
}
// noise函数内部
{...double u = x - floor(x);double v = y - floor(y);double w = z - floor(z);int i = static_cast<int>(floor(x));int j = static_cast<int>(floor(y));int k = static_cast<int>(floor(z));vec3 c[2][2][2];for (int di=0; di < 2; di++)for (int dj=0; dj < 2; dj++)for (int dk=0; dk < 2; dk++)c[di][dj][dk] = ranvec[perm_x[(i+di) % 256] ^perm_y[(j+dj) % 256] ^perm_z[(k+dk) % 256]];double grayscale = perlin_interp(c, u, v, w);...
}

这一步的结果如下图:

在这里插入图片描述

第六次迭代,制造湍流效果。将多个不同频率的噪声以不同的权重相加,这就是湍流。湍流部分的计算代码如下:

double turb(const point3& p, int depth=7) const {double accum = 0.0;double temp_p = p;double weight = 1.0;for (int i = 0; i < depth; i++) {accum += weight*noise(temp_p);weight *= 0.5;temp_p *= 2;}return fabs(accum);
}

这一步得出的效果如下:

注:这里的噪声图颜色很深,是因为这里的效果没有做归一化操作,而是直接把小于零的结果直接取绝对值了。

在这里插入图片描述

第七次,最后一次迭代,调整相位。将得出的灰度值送入正弦函数做计算,可以得到起伏的结果。利用相位迭代,可以实现类似大理石表面的纹理效果。这一步的核心代码如下:

double s = scale * p;
color = color(1,1,1) * 0.5 * (1 + sin(s.z() + 10*noise.turb(s)));

效果图如下:

在这里插入图片描述

平行四边形

除了球体之外,教程中终于添加了另外一种图元:平行四边形。

平行四边形用一个基点和两个向量表示:基点Q、两个边向量u和v。

如何实现射线与平行四边形的求交?主要分三步。

  1. 找到包含这个平行四边形的平面。

  2. 判断射线与这个平面的相交情况。

  3. 判断交点是否在这个平行四边形内。

找到四边形的平面

可以用u和v的叉乘得出平面法线,再将基点Q带入,便可得出这个平面方程。

判断射线与这个平面的相交

射线由一个基点和一个方向向量表示,判断射线与这个平面的相交,可以将射线的方程带入平面的方程。如果射线与平面平行或共面,则认为不相交,如果不平面,则求出这个交点,判断是否在射线的有效范围内。我们可以得到以下的式子。
平面方程: A x + B y + C z = D 射线方程: R ( t ) = P + t d 代入可得: n ∗ ( P + t d ) = D 解方程: n ∗ P + n ∗ t d = D n ∗ P + t ( n ∗ d ) = D t = D − n ∗ P n ∗ d 平面方程:Ax + By + Cz = D \ 射线方程:R(t) = \mathbf P + t\mathbf d\\ 代入可得:\mathbf n * (\mathbf P + t\mathbf d) = D \\ 解方程:\mathbf n *\mathbf P +\mathbf n * t\mathbf d = D\\ \mathbf n *\mathbf P + t(\mathbf n *\mathbf d) = D\\ t = \frac{D - \mathbf n * \mathbf P}{\mathbf n * \mathbf d} 平面方程:Ax+By+Cz=D 射线方程:R(t)=P+td代入可得:n(P+td)=D解方程:nP+ntd=DnP+t(nd)=Dt=ndDnP
如果t属于射线范围[t_min, t_max]之内,则认为射线与这个平面相交。

判断交点是否在这个平行四边形内

将平面的点转换成以u、v为基底的二维坐标系中,对于任意一个点P,可以表示为P = Q + αu + βv。做以下运算:
令 p = P − Q = α u + β v , p 是从 Q 到 P 的向量 将 u 、 v 向量分别与 p 叉乘: v × p = α ( v × u ) + β ( v × v ) = α ( v × u ) u × p = α ( u × u ) + β ( u × v ) = β ( u × v ) 向量的除法不能直接进行,两边点乘 n n ∗ ( v × p ) = n ∗ α ( v × u ) n ∗ ( u × p ) = n ∗ β ( u × v ) 则 α = n ∗ ( v × p ) n ∗ ( v × u ) β = n ∗ ( u × p ) n ∗ ( u × v ) 令 w = n n ∗ ( u × v ) = n n ∗ n α = w ∗ ( p × v ) β = w ∗ ( u × p ) 令 p =\mathbf P -\mathbf Q = \alpha \mathbf u + \beta \mathbf v ,p是从Q到P的向量 \\ \\将u、v向量分别与p叉乘:\\ \mathbf v \times \mathbf p = \alpha (\mathbf v \times \mathbf u) + \beta (\mathbf v \times \mathbf v) = \alpha (\mathbf v \times \mathbf u)\\ \mathbf u \times \mathbf p = \alpha (\mathbf u \times \mathbf u) + \beta (\mathbf u \times \mathbf v) = \beta (\mathbf u \times \mathbf v)\\ \\ 向量的除法不能直接进行,两边点乘n\\ \mathbf n * (\mathbf v \times \mathbf p) = \mathbf n * \alpha (\mathbf v \times \mathbf u)\\ \mathbf n * (\mathbf u \times \mathbf p) = \mathbf n * \beta (\mathbf u \times \mathbf v)\\则 \\ \alpha = \frac{\mathbf n * (\mathbf v \times \mathbf p)}{\mathbf n * (\mathbf v \times \mathbf u)}\\ \beta = \frac{\mathbf n * (\mathbf u \times \mathbf p)}{\mathbf n * (\mathbf u \times \mathbf v)}\\ \\ 令 w = \frac{\mathbf n}{\mathbf n * (\mathbf u \times \mathbf v)} = \frac{\mathbf n}{\mathbf n * \mathbf n} \\ \alpha = \mathbf w * (\mathbf p \times \mathbf v)\\ \beta = \mathbf w * (\mathbf u \times \mathbf p) p=PQ=αu+βvp是从QP的向量uv向量分别与p叉乘:v×p=α(v×u)+β(v×v)=α(v×u)u×p=α(u×u)+β(u×v)=β(u×v)向量的除法不能直接进行,两边点乘nn(v×p)=nα(v×u)n(u×p)=nβ(u×v)α=n(v×u)n(v×p)β=n(u×v)n(u×p)w=n(u×v)n=nnnα=w(p×v)β=w(u×p)
要判断点是否在平行四边形中,判断α和β在[0, 1]范围内即可。

平行四边形的绘制结果:

在这里插入图片描述

灯光

文中将能发光的特性作为一个灯光材质。

灯光材质会有一个主动发光的函数,这样在光线打到灯光材质表面时,会增加一项主动发光所产生的颜色。对于不发光的材质而言,主动发光产生的颜色为零。

同时设置背景颜色,当射线最终没有打到物体时,赋予默认背景颜色,而不是根据画布位置得出的渐变色。

得到的灯光效果如下:

在这里插入图片描述

实例化

这一部分主要引入了模型的移动和旋转。

所谓实例是已放置到场景中的几何图元的副本,它完全独立于图元的其他副本,并且可以移动或旋转。

模型移动

在这个过程的实现中,文中没有直接移动模型的坐标,而是反向变换光线的原点位置,然后与模型做求交运算。具体而言,主要分为以下三步:

  1. 将射线的原点反向移动偏移量

  2. 判断添加偏移后的射线是否与物体存在交点(如果存在,判断在何处)

  3. 给交点的位置增加偏移量

这一过程也可以从坐标变化的角度来思考:

  1. 将射线从世界坐标系转换到物体局部坐标系
  2. 判断射线在物体坐标系内是否与物体存在交点(如果存在,判断在何处)
  3. 将交点从物体局部坐标系转换到世界坐标系

文中将移动封装成了一个可击中对象,相当于构建了一个实例,这部分的代码如下:

class translate : public hittable {public:bool hit(const ray& r, interval ray_t, hit_record& rec) const override {// 将射线的原点反向移动偏移量ray offset_r(r.origin() - offset, r.direction(), r.time());// 判断添加偏移后的射线是否与物体存在交点(如果存在,判断在何处)if (!object->hit(offset_r, ray_t, rec))return false;// 给交点的位置增加偏移量rec.p += offset;return true;}private:shared_ptr<hittable> object;vec3 offset;
};

模型旋转

模型的旋转与上述的构建过程类似,不过稍微复杂。

文中给出的旋转表示方法是欧拉角表示法。当射线变换到有旋转的物体坐标系时,不仅原点位置改变,射线的方向也会改变。这一过程如下:

  1. 将光线的原点和方向从世界坐标系变换到物体坐标系
  2. 判断光线在物体坐标系内与物体是否相交以及交点在何处
  3. 将交点的位置以及交点处的法线从物体坐标系变换到世界坐标系

旋转同样被封装成了一个可击中对象,相当于一个实例,这部分的核心代码如下:

class rotate_y : public hittable {public:bool hit(const ray& r, interval ray_t, hit_record& rec) const override {// 将光线从世界坐标系转换到物体局部坐标系auto origin = r.origin();auto direction = r.direction();origin[0] = cos_theta*r.origin()[0] - sin_theta*r.origin()[2];origin[2] = sin_theta*r.origin()[0] + cos_theta*r.origin()[2];direction[0] = cos_theta*r.direction()[0] - sin_theta*r.direction()[2];direction[2] = sin_theta*r.direction()[0] + cos_theta*r.direction()[2];ray rotated_r(origin, direction, r.time());// 判断是否有交点以及交点在何处if (!object->hit(rotated_r, ray_t, rec))return false;// 将交点从物体局部坐标系转换到世界坐标系auto p = rec.p;p[0] =  cos_theta*rec.p[0] + sin_theta*rec.p[2];p[2] = -sin_theta*rec.p[0] + cos_theta*rec.p[2];// 将交点处的法线从物体局部坐标系转换到世界坐标系auto normal = rec.normalnormal[0] =  cos_theta*rec.normal[0] + sin_theta*rec.normal[2];normal[2] = -sin_theta*rec.normal[0] + cos_theta*rec.normal[2];rec.p = p;rec.normal = normal;return true;}
};

运用平移和旋转,渲染出的cornell场景如下:

在这里插入图片描述

体积物体

这一部分将的是对于类似雾这种对象的光线追踪渲染,不过为了简便,文中只举例了密度恒定,且边界不变的情况。

光线在射向这类物体时,有概率直接穿透,也有概率散射开来。

在这里插入图片描述

对于这样的物体,文中主要设置了两种参数,一个是密度,另一个是边界。

在做射线求交运算时,会设置计算两个碰撞点,分别代表射入和射出的点,并根据密度参数和随机值,计算得出一个新的碰撞点,用来做计算。如果这个点不在体积内,则判定这个射线没有和物体相交,如果在体积内,则判定为相交,进行计算。

判定相交时,射入的光线会在碰撞点处随机散射。

这一步的渲染效果:在这里插入图片描述

最终效果

和上一部教程一样,作者给出了一个大场景,渲染出一个最终效果。

这里我为了能够尽快得出渲染结果,将采样次数降低,牺牲了质量,此时的渲染结果如下:

在这里插入图片描述

完整代码

这一次同样上传在网盘上:

链接:https://pan.baidu.com/s/1hspYR2VGNlxynRJYa9jHug?pwd=qyfj
提取码:qyfj
–来自百度网盘超级会员V6的分享

ps: 只分享了源码,没有什么依赖库,应该可以直接跑出ppm格式的图片。

参考

https://www.cnblogs.com/wickedpriest/p/12269564.html

https://baike.baidu.com/item/%E5%8C%85%E5%9B%B4%E7%9B%92/4562345

https://blog.csdn.net/weixin_44176696/article/details/118655688

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/580785.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Appium如何实现移动端UI自动化测试呢?

Appium是一个开源跨平台移动应用自动化测试框架。 既然只是想学习下Appium如何入门&#xff0c;那么我们就直奔主题。文章结构如下&#xff1a; 为什么要使用Appium&#xff1f;如何搭建Appium工具环境?(超详细&#xff09;通过demo演示Appium的使用Appium如何实现移动端UI自…

使用CRA(create-react-app)初始化一个完整的项目环境(该初始化项目已上传到本文章的资源)

1. 整理项目结构&#xff0c;项目目录结构大致划分如下&#xff1a; 2. 安装sass 安装sass开发环境, 注意&#xff1a;使用的文件后缀名要用.scssnpm i sass -D3. 安装Ant Design npm i antd --save 4. 配置基础路由Router&#xff08;具体可参考ReactRouter使用详解&#x…

Spring高手之路-SpringBean的生命周期

目录 SpringBean的生命周期 整体介绍 详细介绍 1.实例化Bean 2.设置属性值 3.检查Aware 4.调用BeanPostProcessor的前置处理方法 5.调用InitializingBean的afterPropertiesSet方法 6.调用自定义init-method方法 7.调用BeanPostProcessor的后置处理方法 8.注册Destru…

视频压缩不影响画质简单方法,一分钟搞定!

很多朋友在处理视频的时候都会遇到视频过大的问题&#xff0c;想要压缩视频的同时不影响画质&#xff0c;简单的方法有两种。一种是用专业的压缩软件&#xff0c;在压缩的时候设置一个合适的压缩比例&#xff0c;压缩大小的同时保持清晰度&#xff0c;也能提高压缩率&#xff0…

学习自定义【Spring Boot Starter】这一篇就够了

目录 1. starter介绍2. starter原理2-1. 起步依赖2-2. 自动配置基于Java代码的Bean配置自动配置的条件依赖Bean参数获取Bean的发现Bean的加载自动配置总结 3. 自定义starter案例3-1. 开发starter3-2. 使用starter 1. starter介绍 我们知道Spring Boot大大简化了项目初始搭建以…

C语言之进制转换

C语言之进制转换 一、引言二、十进制与二进制、八进制、十六进制三、二进制与八进制、十六进制四、八进制与十六进制 一、引言 在C语言中&#xff0c;经常使用的整数的进制有十进制、二进制、十六进制&#xff08;在C语言中以0x或0X为前缀&#xff09;、八进制&#xff08;在C…

uniapp 创建项目

uniapp 是一款基于 Vue 框架的跨平台应用开发框架。 创建 uniapp 项目 一、打开 HbuilderX 编辑器&#xff0c;点击新建项目。 二、选择 uniapp 项目、自定义项目名称、选择默认模板、选择 Vue 版本、点击创建。 三、这样 uniapp 项目就创建完毕啦&#xff01; 运行 uniapp …

安防视频监控系统EasyCVR实现H.265视频在3秒内起播的注意事项

可视化云监控平台/安防视频监控系统EasyCVR视频综合管理平台&#xff0c;采用了开放式的网络结构&#xff0c;可以提供实时远程视频监控、视频录像、录像回放与存储、告警、语音对讲、云台控制、平台级联、磁盘阵列存储、视频集中存储、云存储等丰富的视频能力&#xff0c;同时…

spdlog中的异步日志方案

日志方案 同步日志方案&#xff1a;立即输出日志记录的方案才能继续执行其他任务。 异步日志方案&#xff1a;先抛出一个日志记录的任务到某个地方&#xff0c;不马上执行打印也不影响往下执行其他任务。 二者关键区别是产生日志记录并调用相关的日志任务接口之后&#xff0…

test mock-01-什么是 mock? Mockito/EasyMock/PowerMock/JMockit/Spock mock 框架对比

拓展阅读 test 之 jmockit-01-overview jmockit-01-test 之 jmockit 入门使用案例 mockito-01-overview mockito 简介及入门使用 PowerMock Mock Server ChaosBlade-01-测试混沌工程平台整体介绍 jvm-sandbox 入门简介 单元测试中的 mock 单元测试是一种验证代码单元&…

K8S网络类型

k8s的网络类型 k8s的通信模式 1 pod内部之间容器与容器之间的通信&#xff0c;在同一个pod中容器是共享资源和网络&#xff0c;使用同一个网络命名空间&#xff0c;可以直接通信 2 同一个node节点之内&#xff0c;不同pod之间的通信&#xff0c;每个pod都有一个全局的真实ip地…

AI 领域代币市场趋势:探索最热门投资领域的前沿动向

作者&#xff1a;lesleyfootprint.network 数据源&#xff1a;Token Sector Dashboard ChatGPT 的热潮点燃了 AI 领域&#xff0c;AI 与区块链技术的融合成为市场关注的焦点。因为区块链的一个显著特征是它能够在链上安全地存储大量数据&#xff0c;这与 AI 模型对数据的密集…

mysql面试题:索引(B+树、聚集索引、二级索引、回表查询、覆盖索引、超大分页查询、索引创建原则)

索引 概念 索引&#xff08;index&#xff09;是帮助MySQL高效获取数据的数据结构(有序)。在数据之外&#xff0c;数据库系统还维护着满足特定查找算法的数据结构**&#xff08;B树&#xff09;**&#xff0c;这些数据结构以某种方式引用&#xff08;指向&#xff09;数据&am…

安装虚拟机在虚拟机里面安装WindowsServer2012与步骤

目录 一、VMware介绍 1.1、概念讲解 1.2、VMware虚拟机的安装讲解 1.3、具体操作步骤 二、虚拟机安装WindowsServer2012演示 2.1、在虚拟机里配置具体步骤 (相当于制作启动U盘) 2.2、安装windows server2012步骤演示 三、Windows Server2012激活步骤演示 四、思维导…

golang并发安全-sync.map

sync.map解决的问题 golang 原生map是存在并发读写的问题&#xff0c;在并发读写时候会抛出异常 func main() {mT : make(map[int]int)g1 : []int{1, 2, 3, 4, 5, 6}g2 : []int{4, 5, 6, 7, 8, 9}go func() {for i : range g1 {mT[i] i}}()go func() {for i : range g2 {mT[…

【SpringBoot篇】优惠券秒杀 — 添加优惠劵操作(基本操作 | 一人仅一张券的操作)

文章目录 &#x1f354;发放优惠券&#x1f386;基本操作&#x1f384;数据库表&#x1f6f8;思路&#x1f339;代码实现 &#x1f386;完善后的操作&#x1f6f8;乐观锁&#x1f339;代码实现 &#x1f354;一人仅一张优惠券&#x1f6f8;思路&#x1f339;代码⭐代码分析 &am…

git远程操作,推送【push】,拉取【pull】,忽略特殊文件,配置别名,标签管理

文章目录 前言&#xff1a;新建远程仓库克隆推送【push】拉取【pull】 配置git忽略特殊文件给命令配置别名 标签管理理解标签创建标签操作标签 前言&#xff1a; 大家如果没有看过前几章git的基础操作的话&#xff0c;推荐先看一下&#xff0c;看完再来看这个远程操作&#xf…

2023年总结:反复纠结与成长的一年

前言 这是我第五年写年度总结&#xff1a; 《2022年总结&#xff1a;道阻且长&#xff0c;行则将至》 《2021年总结&#xff1a;前路有光&#xff0c;初心莫忘》 《2020年总结&#xff0c;所有努力只为一份期待》 《2019年总结&#xff0c;平凡的我仍在平凡的生活》 现在…

【超图】SuperMap iClient3D for WebGL/WebGPU —— 数据集合并缓存如何控制对象样式

作者&#xff1a;taco 最近在支持的过程中&#xff0c;遇到了一个新问题&#xff01;之前研究功能的时候竟然没有想到。通常我们控制单个对象的显隐、颜色、偏移的参数都是根据对象所在的图层以及对象单独的id来算的。那么问题来了&#xff0c;合并后的图层。他怎么控制单个对象…

面试官:SpringBoot项目中,要如何1秒实现异步接口?

今年IT寒冬&#xff0c;大厂都裁员或者准备裁员&#xff0c;作为开猿节流主要目标之一&#xff0c;我们更应该时刻保持竞争力。为了抱团取暖&#xff0c;林老师开通了《知识星球》&#xff0c;并邀请我阿里、快手、腾讯等的朋友加入&#xff0c;分享八股文、项目经验、管理经验…