基于采样的自动驾驶规划算法 - PRM,RRT,RRT*,CL-RRT

本文将讲解PRM,RRT,RRT*自动驾驶规划算法原理,不正之处望读者指正

0 前言

机器人运动规划的基本任务:从开始位置到目标位置的运动
(1)如何躲避构型空间出现的障碍物
(2)如何满足机器人本身在机械、传感方面的速度、加速度等限制

基于采样的运动规划算法就是解决如何躲避构型空间出现的障碍物。

配置空间

机器人规划的配置空间概念:一个空间包含所有机器人自由度的机器人配置,描述为 C − s p a c e C-space Cspace

机器人配置:表示对机器人上点的位置的描述
机器人自由度:规划的时候用最少的坐标数量去表示机器人配置
机器人配置空间:一个空间包含所有机器人自由度的机器人配置,描述为C-space

机器人的位姿在C-space中描述为一个点
机器人配置空间的意义:

在工作空间中进行规划,机器人有不同的形状和大小,需要根据不同的形状大小去做碰撞检测,是费时费力的。

在配置空间中做规划
Alt
机器人在C-space中表示一个点,障碍物做特殊的处理,把工作空间中的障碍物变成配置空间中的障碍物C-obstacle,这个工作是在运动规划前完成的,一次完成的工作

障碍物按照机器人尺寸进行膨胀,上面机器人被设置成了一个点,只要点在障碍物外面,就不会发生碰撞

C-space = C-obstacle + C-free
经过配置空间的处理,路径规划变成了在C-free中找到起点到终点的路径寻找

1 概率路线图(PRM)

在这里插入图片描述

1.1 核心思想

(1)学习预处理阶段

  1. 在配置空间中随机采样足够密集的点
  2. 如果可以相互到达,连接附近的点

(2)查询搜索阶段

采用图搜索算法对G搜索,如果能找到起始点S到终点G的路线,存在可行路径

1.2 PRM主要步骤

(1)采样足够密集的点学习地图结构
在这里插入图片描述
(2)对采样的点碰撞检查,只保留在C-free中的采样点
在这里插入图片描述
(3)每个点通过直线连接到最近的邻居
在这里插入图片描述
(4)删除碰撞连接
在这里插入图片描述
(5)无碰撞连接被保留为边构造图
在这里插入图片描述
(6)添加起点s和终点g到Graph中
在这里插入图片描述
(7)利用图搜索算法A*/Dijstra在路线图里面搜索出一条最优路径
在这里插入图片描述

1.3 算法流程

在这里插入图片描述
PRM算法流程

1 learning-phase阶段:
V V V:构建的图的所有顶点的集合
E E E:图中所有边的集合
2 采样点个数为n
3 通过某种采样策略,不同分布得到采样点
4 以采样点为中心, r r r为半径,在这个圆范围内的邻居节点,把它记录到 U U U
5 把采样点加入到顶点集 V V V
6 遍历邻居节点集 U U U的每个节点
7-8 定义一些规则滤除一些节点和边
7 采样点 x r a n d x_{rand} xrand和已有的节点处在相同的邻接元素下,跳过
8 碰撞检测,检测 x r a n d x_{rand} xrand u u u是不是发生碰撞,如果Free,就把 x r a n d x_{rand} xrand u u u连成的边加入到 E E E
9 重复n次之后,就得到了一个完整的图 G = ( V , E ) G = (V,E) G=(V,E)
最后应用图搜索算法在G上找到一条最优路径

sPRM算法与PRM算法的区别:

只要采样到某个节点,就把以r为半径圆里面所有的节点都进行一个连接,边比PRM多,搜索消耗的资源更大

选择节点之间的连接方式:
(1)k近邻PRM
选择采样点周围最近的k个邻居
U ← k N e a r e s t ( G = ( V , E ) , v , k ) U\gets kNearest(G=(V,E),v,k) UkNearest(G=(V,E),v,k)
(2)有界维度PRM
就是以常规的PRM算法为基础,如果圆里面采样点过多,就找采样点的k个邻居取交集
U ← N e a r ( G , x r a n d , r ) ∩ k N e a r e s t ( G = ( V , E ) , v , k ) U\gets Near(G,x_{rand},r)\cap kNearest(G=(V,E),v,k) UNear(G,xrand,r)kNearest(G=(V,E),v,k)
(3)可变半径PRM
把r为半径的圆作为采样节点个数n的函数,采样点较少情况下,r可以取大一点,采样点足够多的时候,r取小一点

PRM*算法流程
在这里插入图片描述
d d d:维度
n n n:采样节点个数

1.4 PRM算法的优点和缺点

优点:

概率完备性,如果运行时间足够长(或者采集足够多的点),如果有解一定是最优解

缺点:

(1)在整个状态空间上构造图,需要连接特定的开始和目标,可能浪费一些不必要的资源
(2)使用直线连接不符合车辆运动学约束
(3)抽样方法的完备性很弱,即使空间存在合理的路径,由于抽样参数的设置,也可能无法找到路径。因为随机抽样,所以该方法稳定性也不好,对于同样的问题,前后两次解不一样,在严格要求稳定性的场合不适用

采样点的数量采样点存在通路的最大距离是路径规划成功的关键

2 RRT

2.1 RRT核心思想和特点

在这里插入图片描述
RRT是一种通过随机构建空间填充树来有效搜索非凸,高维空间的算法。

核心思想:RRT 算法首先将起点初始化为随机树的根节点,然后在机器人的可达空间中随机生成采样点,从树的根节点逐步向采样点扩展节点,节点和节点之间的连线构成了整个随机树,当某个节点与目标点的距离小于设定的阈值时,即可认为找到可行路径。

在这里插入图片描述

RRT的特点就是能够快速有效地搜索高维空间,通过状态空间的随机采样点,把搜索导向空白区域,从而寻找到一条从起始点到目标点的规划路径,适合解决多自由度机器人在复杂环境下和动态环境中的路径规划

2.2 算法流程

在这里插入图片描述
1 将 x i n i t x_{init} xinit加入到顶点集 V V V
2 采样n次
3 随机采样得到 x r a n d x_{rand} xrand
4 图中距离 x r a n d x_{rand} xrand最近的节点 x n e a r e s t x_{nearest} xnearest
5 连接 x r a n d x_{rand} xrand x n e a r e s t x_{nearest} xnearest,之间的节点 x n e w x_{new} xnew
6-7 只有通过碰撞检测,才会把 x n e w x_{new} xnew加入顶点集 V V V,连接 x n e a r e s t x_{nearest} xnearest x n e w x_{new} xnew

2.3 RRT优缺点

优点:

(1)简单找到起点到终点的路径,比PRM更高效,该算法通过尽可能少地探索环境,来实现有效的单一路径规划,对未知环境适应能力强
(2)RRT 算法通过随机树向未观察的空间区域生长,并且不会回归到已经探索过的区域,这实现了对空间的快速探索
(3)搜索方法不是维持固定的栅格结构,而是在运行中构建随机树,通过随机树内部的节点的连接找到路径。

缺点:

(1)不满足概率完备性,只能连接最近的节点
(2)需要对输入空间进行离散化采样次数太少,则生成的路径将表现出较差的性能采样次数太多则会增加整个规划过程的计算量降低路径规划的实时性
(3)RRT算法生成的路径存在冗余的节点,增加机器人实际运行中的路程

2.4 RRG

RRT的变体,具有概率完备性
在这里插入图片描述
核心思想:

不要只连接 x n e w x_{new} xnew x n e a r e s t x_{nearest} xnearest
尝试连接到半径内的所有顶点

最后需要接入图搜索算法寻找一条最优路径,违背了RRT的初衷,没有把构造图和搜索步骤合二为一

2.5 基于运动学的RRT

在这里插入图片描述
区别在于5 使用基于运动学的方法来引导两个节点
在这里插入图片描述

3 RRT*

在这里插入图片描述

3.1 核心思想

(1)相比于RRG算法,维护树结构而不是图,会从图中删除多余的边
(2)相比于RRT算法,添加了“rewire"操作(每次采样到新的节点,会把以他为圆心,半径为r的圆内其他节点作为一个考量,对这些节点做一些修剪的操作)确保通过最小成本路径到达顶点

3.2 RRT*算法流程

在这里插入图片描述

前半部分与RRT相同
在这里插入图片描述

后半部分
(1)连接以r为半径的圆的所有顶点,在集合中选择cost最小的去连接
在这里插入图片描述

(2)得到了 x n e a r x_{near} xnear,依次遍历每一个节点,判断累计成本最小的,将 x n e a r x_{near} xnear标记为 x m i n x_{min} xmin:保证 x n e w x_{new} xnew本身的最优性
(3)对树做修剪:每次采样到 x n e w x_{new} xnew之后,周围其他节点都会做一次检查,判断是否能找到cost最小的路径
在这里插入图片描述
在这里插入图片描述

4 CL-RRT

核心思想:
(1)相比于对车辆输入进行采样的标准的RRT,CL-RRT对控制器的输入进行采样
(2)通过前向模拟得到动态可行轨迹
(3)对于城市场景,优化算法策略:采样策略、节点选择策略
在这里插入图片描述
转向控制器:Pure-Pursuit Controller
在这里插入图片描述

速度控制器:PI Controller
在这里插入图片描述
在这里插入图片描述
采样策略:
在这里插入图片描述
n r 、 n θ n_r、n_\theta nrnθ:具有高斯分布的随机变量
σ r \sigma_r σr:径向标准差
σ θ \sigma_\theta σθ:圆周方向标准差

根据车辆位置和道路规则改变这些参数

Node选择策略:
(1)RRT试图将样本连接到树中最近的节点,当RRT应用于转弯能力有限的车辆时,需要进行拓展
(2)CL-RRT算法使用节点和采样点之间的Dubins路径长度作为距离度量
在这里插入图片描述
Reeds-Shepp曲线和Dubins曲线

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/580326.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SkyWalking UI 修改发布Nginx

文章目录 SkyWalking UI修改图标修改路由发布到Nginx添加认证修改路由模式vite.config.ts添加baseNginx配置 SkyWalking UI skywalking-booster-ui下载地址 修改图标 替换 logo.svg 修改路由 router - data - index.ts 发布到Nginx 添加认证 # 安装 yum install -y h…

VMware ESXi常用查看RAID和磁盘信息工具及命令汇总

一、Esxcli 使用 Esxcli 命令可获取有关 vSAN 的信息,以及对您的 vSAN 环境进行故障排除。 可用命令如下: 命令描述esxcli vsan network list确认哪些 VMkernel 适配器可用于 vSAN 通信。esxcli vsan storage list列出由 vSAN 声明的存储磁盘。esxcli…

Pikachu靶场 “Http Header”SQL注入

1. 先在 pikachu 打开 Http Header 注入模块,点击提示 查看登录 账号 和 密码,登陆后去 Burp 中找到登陆的 GET请求 2. 设置payload1 :在 User-Agent最后 输入 查看 数据库名 or updatexml(1,concat(0x7e,database()),0) or 查看 用户名…

随机梯度辨识方法

Matlab 利用随机梯度方法进行辨识的举例,可以结合不同情况进行优化处理(例如需要复现文献中结果) Matlab代码如下: clc;clear;close; format short g; M Stochastic gradient method; sigma 0.5; % Noise standard deviati…

asp.net core 教程

asp.net core 教程 写在前面新建项目Get和PostGETPOST MVC-模型控制视图如何通俗理解MVCMVC架构---文件夹详解Connected ServicesPropertieswwwroot依赖项ControllersModelsViews 代码实例 API模型(前后端分离)前端代码后端代码 文件配置优先级优先级顺序…

YOLOv5改进 | 主干篇 | 利用MobileNetV3替换Backbone(轻量化网络结构)

一、本文介绍 本文给大家带来的改进机制是MobileNetV3,其主要改进思想集中在结合硬件感知的网络架构搜索(NAS)和NetAdapt算法,以优化移动设备CPU上的性能。它采用了新颖的架构设计,包括反转残差结构和线性瓶颈层&…

dev express 15.2图表绘制性能问题(dotnet绘图表)

dev express 15.2 绘制曲线 前端代码 <dxc:ChartControl Grid.Row"1"><dxc:XYDiagram2D EnableAxisXNavigation"True"><dxc:LineSeries2D x:Name"series" CrosshairLabelPattern"{}{A} : {V:F2}"/></dxc:XYDi…

嵌入式-stm32-SR04超声波测距介绍及实战

一&#xff1a;超声波传感器介绍 1.1、SR04超声波测距硬件模块 1.2、SR04的四个IO口 vcc:提供电源5V gnd:接地 Trig:是**发送**声波信号的触发器 Echo:是**接收**回波信号的引脚 当TRIG信号被触发时&#xff0c;传感器会发送一定频率的声波信号&#xff0c;该信号被反射后&am…

Android中_Service生命周期和AMS流程的创建

Service生命周期可以结合Android生命周期分析。 Service生命周期可以从两种启动Service的模式开始讲起&#xff0c;分别是context.startService()和context.bindService()。 Service的生命周期与启动和绑定状态相关。当调用startService()方法启动服务时&#xff0c;会执行onS…

【DeepLearning】Deep Residual Learning for Image Recognition恺神大作学习

[TOC] Deep Residual Learning for Image Recognition 论文 1. 文章主要想解决什么问题&#xff0c;用了什么方法 深度神经网络在训练过程中的3个关键问题&#xff1a; 梯度消失/爆炸问题&#xff1a;随着网络层数的增加&#xff0c;梯度在反向传播过程中可能会变得非常小&a…

Hooked协议掀起WEB3新浪潮

随着区块链技术和加密货币的兴起&#xff0c;币圈已经成为全球范围内的一个热门领域。在这个充满机遇与挑战的行业中&#xff0c;Hook机制正逐渐成为一种重要的技术手段&#xff0c;为投资者、开发者以及相关机构提供了更多的选择和可能性。本文将详细介绍币圈中的Hook机制&…

腾讯云4核8G服务器三年优惠价格表

腾讯云轻量服务器4核8G12M有三年优惠价吗&#xff1f;有&#xff0c;但是不怎么优势&#xff0c;相对于云轻量2核2G4M带宽三年价格是540元、2核4G5M带宽3年优惠价756元&#xff0c;4核8G12M轻量应用服务器三年价格是5292元&#xff0c;怎么样&#xff1f;还想买吗&#xff1f;阿…

python3下载手机安卓版,python下载手机版最新

大家好&#xff0c;小编为大家解答python3下载手机安卓版的问题。很多人还不知道python下载手机版最新&#xff0c;现在让我们一起来看看吧&#xff01; 1、先去python官网下载python3的源码包&#xff0c;网址&#xff1a;https://www.python.org/ 1)进去之后点击导航栏的Down…

ansible 备忘清单(一)

笔者&#xff1a; 把以前的手写笔记电子化吧&#xff0c;顺便当作复习。 基础命令 命令 参数 备注 ansible --version 查看版本号 ansible-doc --help 查看帮助信息 -l &#xff5c;--list 查看所有模块 -s 查看模块摘要 Ansible servers -I &#xff5c;-…

浅谈数据仓库运营

一、背景 企业每天都会产生大量的数据&#xff0c;随着时间增长&#xff0c;数据会呈现几何增长&#xff0c;尤其在系统基建基础好的公司。好的数据仓库需要提前规划和好的运营&#xff0c;才能支持企业的发展&#xff0c;为企业提供数据分析基础。 二、目标 提高数据仓库存储…

前端发展趋势:WebAssembly、PWA 和响应式设计

目录 前言 WebAssembly&#xff1a;超越JavaScript的性能 渐进式Web应用&#xff08;PWA&#xff09;&#xff1a;离线可用和更好的用户体验 响应式设计&#xff1a;适应多种设备 总结 作者简介&#xff1a; 懒大王敲代码&#xff0c;计算机专业应届生 今天给大家聊聊前端…

iOS - 钥匙串(keychain)中的证书没有右三角,无法导出p12文件

如下图&#xff0c;证书左侧没有小三角形&#xff0c;无法导出 .p12文件 我遇到的问题是&#xff0c;因为CSR文件有问题&#xff0c;只需要重新在钥匙串上重新导出一个CSR文件&#xff0c;然后再重新制作证书即可

web前端html笔记2

新增状态标签<meter><progress> <meter> 属性 值 描述 high 数值 规定高值 low 数值 规定低值 max 数值 规定最大值 min 数值 规定最小值 optimum 数值 规定最优值 value 数值 规定当前值 <body> <meter high"50" …

论文降重隐藏字符怎么识别 papergpt

大家好&#xff0c;今天来聊聊论文降重隐藏字符怎么识别&#xff0c;希望能给大家提供一点参考。 以下是针对论文重复率高的情况&#xff0c;提供一些修改建议和技巧&#xff0c;可以借助此类工具&#xff1a; 论文降重隐藏字符的识别方法 一、引言 在论文降重过程中&#xff…

实战10 角色管理

目录 1、角色后端接口 2、角色列表查询 2.1 效果图 2.2页面原型代码 2.3 角色api代码 role.js 2.4 查询角色列表代码 4、 新增和编辑角色 5、删除角色 6、分配权限 6.1 分配权限思路 6.2 分配权限回显接口 6.3 分配权限回显前端实现 6.4分配权限后端接口 6.4.1 R…