企业级实战项目:基于 pycaret 自动化预测公司是否破产

本文系数据挖掘实战系列文章,我跟大家分享一个数据挖掘实战,与以往的数据实战不同的是,用自动机器学习方法完成模型构建与调优部分工作,深入理解由此带来的便利与效果。

1. Introduction

在这里插入图片描述

本文是一篇数据挖掘实战案例,详细探索了从台湾经济杂志收集的1999年到2009年的数据,看看在数据探索过程中,可以洞察出哪些有用的信息,判断哪一个模型能够最准确地预测公司是否破产。

公司破产的定义是根据台湾证券交易所的商业规则而定的。

该建模将尝试使用自动机器学习库pycaret来构建机器学习模型,pycaret是一个用python编写的开源低代码机器学习库,它将机器学习工作流程自动化。如果你想探索这个库并更好地理解它的功能。推荐查看

设置环境并读取数据

import pandas as pd  
import numpy as np  
import math  
import matplotlib.pyplot as plt  
import seaborn as sns  bankruptcy_df = pd.read_csv("Bankruptcy.csv")    bankruptcy_df.head()  

技术交流&源码获取

技术要学会交流、分享,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

好的文章离不开粉丝的分享、推荐,资料干货、资料分享、数据、技术交流提升,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

本文数据&源码,技术交流、按照如下方式获取:

方式①、添加微信号:dkl88194,备注:资料
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:资料

资料1
在这里插入图片描述
资料2

我们打造了《100个超强算法模型》,特点:从0到1轻松学习,原理、代码、案例应有尽有,所有的算法模型都是按照这样的节奏进行表述,所以是一套完完整整的案例库。

很多初学者是有这么一个痛点,就是案例,案例的完整性直接影响同学的兴致。因此,我整理了 100个最常见的算法模型,在你的学习路上助推一把!

在这里插入图片描述

2. 理解数据

bankruptcy_df.info()
<class 'pandas.core.frame.DataFrame'>  
RangeIndex: 6819 entries, 0 to 6818  
Data columns (total 96 columns):  #   Column                                                    Non-Null Count  Dtype    ---  ------                                                    --------------  -----  0   Bankrupt?                                                 6819 non-null   int64    1    ROA(C) before interest and depreciation before interest  6819 non-null   float64  2    ROA(A) before interest and % after tax                   6819 non-null   float64  3    ROA(B) before interest and depreciation after tax        6819 non-null   float64  4    Operating Gross Margin                                   6819 non-null   float64  5    Realized Sales Gross Margin                              6819 non-null   float64  6    Operating Profit Rate                                    6819 non-null   float64  7    Pre-tax net Interest Rate                                6819 non-null   float64  8    After-tax net Interest Rate                              6819 non-null   float64  9    Non-industry income and expenditure/revenue              6819 non-null   float64  10   Continuous interest rate (after tax)                     6819 non-null   float64  11   Operating Expense Rate                                   6819 non-null   float64  12   Research and development expense rate                    6819 non-null   float64  13   Cash flow rate                                           6819 non-null   float64  14   Interest-bearing debt interest rate                      6819 non-null   float64  15   Tax rate (A)                                             6819 non-null   float64  16   Net Value Per Share (B)                                  6819 non-null   float64  17   Net Value Per Share (A)                                  6819 non-null   float64  18   Net Value Per Share (C)                                  6819 non-null   float64  19   Persistent EPS in the Last Four Seasons                  6819 non-null   float64  20   Cash Flow Per Share                                      6819 non-null   float64  21   Revenue Per Share (Yuan ¥)                               6819 non-null   float64  22   Operating Profit Per Share (Yuan ¥)                      6819 non-null   float64  23   Per Share Net profit before tax (Yuan ¥)                 6819 non-null   float64  24   Realized Sales Gross Profit Growth Rate                  6819 non-null   float64  25   Operating Profit Growth Rate                             6819 non-null   float64  26   After-tax Net Profit Growth Rate                         6819 non-null   float64  27   Regular Net Profit Growth Rate                           6819 non-null   float64  28   Continuous Net Profit Growth Rate                        6819 non-null   float64  29   Total Asset Growth Rate                                  6819 non-null   float64  30   Net Value Growth Rate                                    6819 non-null   float64  31   Total Asset Return Growth Rate Ratio                     6819 non-null   float64  32   Cash Reinvestment %                                      6819 non-null   float64  33   Current Ratio                                            6819 non-null   float64  34   Quick Ratio                                              6819 non-null   float64  35   Interest Expense Ratio                                   6819 non-null   float64  36   Total debt/Total net worth                               6819 non-null   float64  37   Debt ratio %                                             6819 non-null   float64  38   Net worth/Assets                                         6819 non-null   float64  39   Long-term fund suitability ratio (A)                     6819 non-null   float64  40   Borrowing dependency                                     6819 non-null   float64  41   Contingent liabilities/Net worth                         6819 non-null   float64  42   Operating profit/Paid-in capital                         6819 non-null   float64  43   Net profit before tax/Paid-in capital                    6819 non-null   float64  44   Inventory and accounts receivable/Net value              6819 non-null   float64  45   Total Asset Turnover                                     6819 non-null   float64  46   Accounts Receivable Turnover                             6819 non-null   float64  47   Average Collection Days                                  6819 non-null   float64  48   Inventory Turnover Rate (times)                          6819 non-null   float64  49   Fixed Assets Turnover Frequency                          6819 non-null   float64  50   Net Worth Turnover Rate (times)                          6819 non-null   float64  51   Revenue per person                                       6819 non-null   float64  52   Operating profit per person                              6819 non-null   float64  53   Allocation rate per person                               6819 non-null   float64  54   Working Capital to Total Assets                          6819 non-null   float64  55   Quick Assets/Total Assets                                6819 non-null   float64  56   Current Assets/Total Assets                              6819 non-null   float64  57   Cash/Total Assets                                        6819 non-null   float64  58   Quick Assets/Current Liability                           6819 non-null   float64  59   Cash/Current Liability                                   6819 non-null   float64  60   Current Liability to Assets                              6819 non-null   float64  61   Operating Funds to Liability                             6819 non-null   float64  62   Inventory/Working Capital                                6819 non-null   float64  63   Inventory/Current Liability                              6819 non-null   float64  64   Current Liabilities/Liability                            6819 non-null   float64  65   Working Capital/Equity                                   6819 non-null   float64  66   Current Liabilities/Equity                               6819 non-null   float64  67   Long-term Liability to Current Assets                    6819 non-null   float64  68   Retained Earnings to Total Assets                        6819 non-null   float64  69   Total income/Total expense                               6819 non-null   float64  70   Total expense/Assets                                     6819 non-null   float64  71   Current Asset Turnover Rate                              6819 non-null   float64  72   Quick Asset Turnover Rate                                6819 non-null   float64  73   Working capitcal Turnover Rate                           6819 non-null   float64  74   Cash Turnover Rate                                       6819 non-null   float64  75   Cash Flow to Sales                                       6819 non-null   float64  76   Fixed Assets to Assets                                   6819 non-null   float64  77   Current Liability to Liability                           6819 non-null   float64  78   Current Liability to Equity                              6819 non-null   float64  79   Equity to Long-term Liability                            6819 non-null   float64  80   Cash Flow to Total Assets                                6819 non-null   float64  81   Cash Flow to Liability                                   6819 non-null   float64  82   CFO to Assets                                            6819 non-null   float64  83   Cash Flow to Equity                                      6819 non-null   float64  84   Current Liability to Current Assets                      6819 non-null   float64  85   Liability-Assets Flag                                    6819 non-null   int64    86   Net Income to Total Assets                               6819 non-null   float64  87   Total assets to GNP price                                6819 non-null   float64  88   No-credit Interval                                       6819 non-null   float64  89   Gross Profit to Sales                                    6819 non-null   float64  90   Net Income to Stockholder's Equity                       6819 non-null   float64  91   Liability to Equity                                      6819 non-null   float64  92   Degree of Financial Leverage (DFL)                       6819 non-null   float64  93   Interest Coverage Ratio (Interest expense to EBIT)       6819 non-null   float64  94   Net Income Flag                                          6819 non-null   int64    95   Equity to Liability                                      6819 non-null   float64  
dtypes: float64(93), int64(3)  
memory usage: 5.0 MB
bankruptcy_df.shape  
(6819, 96)  
bankruptcy_df.describe()  

3. 数据探索与清洗

3.1 缺失值处理

bankruptcy_df.columns[bankruptcy_df.isna().any()]  
Index([], dtype='object')  

从结果看,改数据集非常完整,没有缺失值!

.any() 指的是有没有(缺失值),而与之对应的.all()指的是是否都是(缺失值)

调整数据列名
def clean_col_names(col_name):  col_name = (  col_name.strip()  .replace("?", "_")  .replace("(", "_")  .replace(")", "_")  .replace(" ", "_")  .replace("/", "_")  .replace("-", "_")  .replace("__", "_")  .replace("'", "")  .lower()  )  return col_name  bank_columns = list(bankruptcy_df.columns)  
bank_columns = [clean_col_names(col_name) for col_name in bank_columns]  
bankruptcy_df.columns = bank_columns  
display(bankruptcy_df.columns)
Index(['bankrupt_', 'roa_c_before_interest_and_depreciation_before_interest',  'roa_a_before_interest_and_%_after_tax',  'roa_b_before_interest_and_depreciation_after_tax',  'operating_gross_margin', 'realized_sales_gross_margin',  'operating_profit_rate', 'pre_tax_net_interest_rate',  'after_tax_net_interest_rate',  'non_industry_income_and_expenditure_revenue',  'continuous_interest_rate_after_tax_', 'operating_expense_rate',  'research_and_development_expense_rate', 'cash_flow_rate',  'interest_bearing_debt_interest_rate', 'tax_rate_a_',  'net_value_per_share_b_', 'net_value_per_share_a_',  'net_value_per_share_c_', 'persistent_eps_in_the_last_four_seasons',  'cash_flow_per_share', 'revenue_per_share_yuan_¥_',  'operating_profit_per_share_yuan_¥_',  'per_share_net_profit_before_tax_yuan_¥_',  'realized_sales_gross_profit_growth_rate',  'operating_profit_growth_rate', 'after_tax_net_profit_growth_rate',  'regular_net_profit_growth_rate', 'continuous_net_profit_growth_rate',  'total_asset_growth_rate', 'net_value_growth_rate',  'total_asset_return_growth_rate_ratio', 'cash_reinvestment_%',  'current_ratio', 'quick_ratio', 'interest_expense_ratio',  'total_debt_total_net_worth', 'debt_ratio_%', 'net_worth_assets',  'long_term_fund_suitability_ratio_a_', 'borrowing_dependency',  'contingent_liabilities_net_worth', 'operating_profit_paid_in_capital',  'net_profit_before_tax_paid_in_capital',  'inventory_and_accounts_receivable_net_value', 'total_asset_turnover',  'accounts_receivable_turnover', 'average_collection_days',  'inventory_turnover_rate_times_', 'fixed_assets_turnover_frequency',  'net_worth_turnover_rate_times_', 'revenue_per_person',  'operating_profit_per_person', 'allocation_rate_per_person',  'working_capital_to_total_assets', 'quick_assets_total_assets',  'current_assets_total_assets', 'cash_total_assets',  'quick_assets_current_liability', 'cash_current_liability',  'current_liability_to_assets', 'operating_funds_to_liability',  'inventory_working_capital', 'inventory_current_liability',  'current_liabilities_liability', 'working_capital_equity',  'current_liabilities_equity', 'long_term_liability_to_current_assets',  'retained_earnings_to_total_assets', 'total_income_total_expense',  'total_expense_assets', 'current_asset_turnover_rate',  'quick_asset_turnover_rate', 'working_capitcal_turnover_rate',  'cash_turnover_rate', 'cash_flow_to_sales', 'fixed_assets_to_assets',  'current_liability_to_liability', 'current_liability_to_equity',  'equity_to_long_term_liability', 'cash_flow_to_total_assets',  'cash_flow_to_liability', 'cfo_to_assets', 'cash_flow_to_equity',  'current_liability_to_current_assets', 'liability_assets_flag',  'net_income_to_total_assets', 'total_assets_to_gnp_price',  'no_credit_interval', 'gross_profit_to_sales',  'net_income_to_stockholders_equity', 'liability_to_equity',  'degree_of_financial_leverage_dfl_',  'interest_coverage_ratio_interest_expense_to_ebit_', 'net_income_flag',  'equity_to_liability'],  dtype='object')
统计并绘制目标变量

该步骤的目的是查看目标变量是否平衡,如果不平衡,则需要针对性处理。

class_bar=sns.countplot(data=bankruptcy_df,x="bankrupt_")  
ax = plt.gca()  
for p in ax.patches:  ax.annotate('{:.1f}'.format(p.get_height()), (p.get_x()+0.3, p.get_height()+500))  
class_bar  

3.2 特征分布

检查偏态
# Return true/false if skewed  
import scipy.stats  
skew_df = pd.DataFrame(bankruptcy_df.select_dtypes(np.number).columns, columns = ['Feature'])  skew_df['Skew'] = skew_df['Feature'].apply(lambda feature: scipy.stats.skew(bankruptcy_df[feature]))   skew_df['Absolute Skew'] = skew_df['Skew'].apply(abs)    
# 得到与方向无关的倾斜幅度  
skew_df['Skewed']= skew_df['Absolute Skew'].apply(lambda x: True if x>= 0.5 else False)  
with pd.option_context("display.max_rows", 1000):  display(skew_df)

可视化分布
cols = list(bankruptcy_df.columns)  
ncols = 8  
nrows = math.ceil(len(cols) / ncols)  fig, ax = plt.subplots(nrows, ncols, figsize = (4.5 * ncols, 4 * nrows))  
for i in range(len(cols)):  sns.kdeplot(bankruptcy_df[cols[i]], ax = ax[i // ncols, i % ncols])  if i % ncols != 0:  ax[i // ncols, i % ncols].set_ylabel(" ")  
plt.tight_layout()  
plt.show()  

在这里插入图片描述

查看有偏态的特征
query_skew=skew_df.query("Skewed == True")["Feature"]  
with pd.option_context("display.max_rows", 1000):  display(query_skew)
0                                             bankrupt_  
2                 roa_a_before_interest_and_%_after_tax  
3      roa_b_before_interest_and_depreciation_after_tax  
4                                operating_gross_margin  
5                           realized_sales_gross_margin  
6                                 operating_profit_rate  
7                             pre_tax_net_interest_rate  
8                           after_tax_net_interest_rate  
9           non_industry_income_and_expenditure_revenue  
10                  continuous_interest_rate_after_tax_  
11                               operating_expense_rate  
12                research_and_development_expense_rate  
13                                       cash_flow_rate  
14                  interest_bearing_debt_interest_rate  
15                                          tax_rate_a_  
16                               net_value_per_share_b_  
17                               net_value_per_share_a_  
18                               net_value_per_share_c_  
19              persistent_eps_in_the_last_four_seasons  
20                                  cash_flow_per_share  
21                            revenue_per_share_yuan_¥_  
22                   operating_profit_per_share_yuan_¥_  
23              per_share_net_profit_before_tax_yuan_¥_  
24              realized_sales_gross_profit_growth_rate  
25                         operating_profit_growth_rate  
26                     after_tax_net_profit_growth_rate  
27                       regular_net_profit_growth_rate  
28                    continuous_net_profit_growth_rate  
29                              total_asset_growth_rate  
30                                net_value_growth_rate  
31                 total_asset_return_growth_rate_ratio  
32                                  cash_reinvestment_%  
33                                        current_ratio  
34                                          quick_ratio  
35                               interest_expense_ratio  
36                           total_debt_total_net_worth  
37                                         debt_ratio_%  
38                                     net_worth_assets  
39                  long_term_fund_suitability_ratio_a_  
40                                 borrowing_dependency  
41                     contingent_liabilities_net_worth  
42                     operating_profit_paid_in_capital  
43                net_profit_before_tax_paid_in_capital  
44          inventory_and_accounts_receivable_net_value  
45                                 total_asset_turnover  
46                         accounts_receivable_turnover  
47                              average_collection_days  
48                       inventory_turnover_rate_times_  
49                      fixed_assets_turnover_frequency  
50                       net_worth_turnover_rate_times_  
51                                   revenue_per_person  
52                          operating_profit_per_person  
53                           allocation_rate_per_person  
57                                    cash_total_assets  
58                       quick_assets_current_liability  
59                               cash_current_liability  
60                          current_liability_to_assets  
61                         operating_funds_to_liability  
62                            inventory_working_capital  
63                          inventory_current_liability  
64                        current_liabilities_liability  
65                               working_capital_equity  
66                           current_liabilities_equity  
67                long_term_liability_to_current_assets  
68                    retained_earnings_to_total_assets  
69                           total_income_total_expense  
70                                 total_expense_assets  
71                          current_asset_turnover_rate  
72                            quick_asset_turnover_rate  
73                       working_capitcal_turnover_rate  
74                                   cash_turnover_rate  
75                                   cash_flow_to_sales  
76                               fixed_assets_to_assets  
77                       current_liability_to_liability  
78                          current_liability_to_equity  
79                        equity_to_long_term_liability  
81                               cash_flow_to_liability  
83                                  cash_flow_to_equity  
84                  current_liability_to_current_assets  
85                                liability_assets_flag  
86                           net_income_to_total_assets  
87                            total_assets_to_gnp_price  
88                                   no_credit_interval  
89                                gross_profit_to_sales  
90                    net_income_to_stockholders_equity  
91                                  liability_to_equity  
92                    degree_of_financial_leverage_dfl_  
93    interest_coverage_ratio_interest_expense_to_ebit_  
95                                  equity_to_liability  
Name: Feature, dtype: object

进行下采样,直至样本集中的破产与非破产比例为50/50。完成之后再次对数据进行偏态检查,决定是否需要做log转换,另外进行相关矩阵分析。

3.3 下采样

首先对数据集进行下采样,目标比例为bankrupt vs non bankrupt = 50 vs 50

bankruptcy_df2 = bankruptcy_df.sample(frac=1) #Shuffle Bankruptcy df  bankruptcy_df_b = bankruptcy_df2.loc[bankruptcy_df2["bankrupt_"] == 1]  
bankruptcy_df_nb = bankruptcy_df2.loc[bankruptcy_df2["bankrupt_"] == 0][:220]  bankruptcy_subdf_comb = pd.concat([bankruptcy_df_b,bankruptcy_df_nb])  
bankruptcy_subdf = bankruptcy_subdf_comb.sample(frac=1,random_state=42)  bankruptcy_subdf  

再次绘图查看正负样本数。

sns.countplot(bankruptcy_subdf["bankrupt_"])  

随机选择220家非破产公司和220家破产公司。

4. 特征工程

bankruptcy_subdf2 = bankruptcy_subdf.drop(["net_income_flag"],axis=1)  
bankruptcy_subdf2.shape  
(440, 95)  

4.1 相关矩阵

fig = plt.figure(figsize=(30,20))  
ax1 = fig.add_subplot(1,1,1)  
sns.heatmap(bankruptcy_subdf2.corr(),ax=ax1,cmap="coolwarm")  
4.1.1 找出与破产相关的最高特征

根据对破产企业的基本认识,破产企业资产少、负债高、盈利能力低、现金流少。可以朝这个方向分析我们的数据集。

corr=bankruptcy_subdf2[bankruptcy_subdf2.columns[:-1]].corr()['bankrupt_'][:]  corr_df = pd.DataFrame(corr)  print("Correlations to Bankruptcy:")  
for index, row in corr_df["bankrupt_"].iteritems():  if row!=1.0 and row>=0.5:  print(f'Positive Correlation: {index}')  elif row!=1.0 and row<=-0.5:  print(f'Negative Correlation: {index}')  
Correlations to Bankruptcy:  
Negative Correlation: roa_c_before_interest_and_depreciation_before_interest  
Negative Correlation: roa_b_before_interest_and_depreciation_after_tax  
Negative Correlation: net_value_per_share_b_  
Negative Correlation: net_value_per_share_a_  
Negative Correlation: net_value_per_share_c_  
Negative Correlation: persistent_eps_in_the_last_four_seasons  
Negative Correlation: per_share_net_profit_before_tax_yuan_¥_  
Positive Correlation: debt_ratio_%  
Negative Correlation: net_worth_assets  
Negative Correlation: net_profit_before_tax_paid_in_capital  
Negative Correlation: total_income_total_expense  

这些特征代表什么

  • roa_c_before_interest_and_depreciation_before_interest息前资产收益率和息前折旧:总资产收益率–如果总资产收益率低,破产风险高

  • roa_a_before_interest_and_after_tax息前和税后利润:总资产回报率–如果总资产回报率较低,破产风险较高

  • roa_b_before_interest_and_depreciation_after_tax利润不计利息及税后折旧:总资产回报率–如果总资产回报率较低,破产风险较高

  • debt_ratio负债率:负债占总资产的比例–价值越高,负债占资产的比例越高,导致破产风险越高

  • net_worth_assets净资产:净资产越少,破产风险越高

  • retained_earnings_to_total_assets留存收益与总资产之比:留存收益越少,破产风险越高

  • total_income_total_expense总费用:收入与费用之比较低,破产风险较高

  • net_income_to_total_assets净收入与总资产之比:净收入越低,破产风险越高

从结果看,导致公司违约风险越高的特征,似乎与背景知识一致。

4.2 下采样后特征分布可视化

# Visualisation of distributions after sub-sampling  
cols = list(bankruptcy_subdf2.columns)  
ncols = 8  
nrows = math.ceil(len(cols) / ncols)  fig, ax = plt.subplots(nrows, ncols, figsize = (4.5 * ncols, 4 * nrows))  
for i in range(len(cols)):  sns.kdeplot(bankruptcy_subdf2[cols[i]], ax = ax[i // ncols, i % ncols])  if i % ncols != 0:  ax[i // ncols, i % ncols].set_ylabel(" ")  
plt.tight_layout()  
plt.show()  

在这里插入图片描述

4.3 所有特征的箱线图

plt.figure(figsize=(30,20))  
boxplot=sns.boxplot(data=bankruptcy_subdf2,orient="h")  
boxplot.set(xscale="log")  
plt.show()  

在这里插入图片描述

4.4 异常值处理

quartile1 = bankruptcy_subdf2.quantile(q=0.25,axis=0)  
# display(quartile1)  
quartile3 = bankruptcy_subdf2.quantile(q=0.75,axis=0)  
# display(quartile3)  
IQR = quartile3 -quartile1  
lower_limit = quartile1-1.5*IQR  
upper_limit = quartile3+1.5*IQR  lower_limit = lower_limit.drop(["bankrupt_"])  
upper_limit = upper_limit.drop(["bankrupt_"])  
# print(lower_limit)  
# print(" ")  
# print(upper_limit)  bankruptcy_subdf2_out = bankruptcy_subdf2[((bankruptcy_subdf2<lower_limit) | (bankruptcy_subdf2>upper_limit)).any(axis=1)]  
display(bankruptcy_subdf2_out.shape)  
display(bankruptcy_subdf2.shape)  
(423, 95)  (440, 95)  

额外复制一份表,供后续分析处理。

bankruptcy_subdf3 = bankruptcy_subdf2_out.copy()  
bankruptcy_subdf3  

下采样后且去除离群值后的分布可视化。

# Visualisation of distributions after sub-sampling after outlier removal  
cols = list(bankruptcy_subdf3.columns)  
ncols = 8  
nrows = math.ceil(len(cols) / ncols)  fig, ax = plt.subplots(nrows, ncols, figsize = (4.5 * ncols, 4 * nrows))  
for i in range(len(cols)):  sns.kdeplot(bankruptcy_subdf3[cols[i]], ax = ax[i // ncols, i % ncols],fill=True,color="red")  sns.kdeplot(bankruptcy_subdf2[cols[i]], ax = ax[i // ncols, i % ncols],color="green")  if i % ncols != 0:  ax[i // ncols, i % ncols].set_ylabel(" ")  
plt.tight_layout()  
plt.show()  

在这里插入图片描述

5 数据预处理

5.1 特征编码

所有类别在基础数据中都已编码完成,因此这里不需要再次编码列。在实际工作中,这一步大概率是必不可少的,编码技术也是尤其重要,需要好好掌握。如果你还不了解或不是很了解,推荐查看:

5.2 Log转换

这一步是为了去除数据中的偏态分布。

# Log transform to remove skews  
target = bankruptcy_subdf3['bankrupt_']  
bankruptcy_subdf4 = bankruptcy_subdf3.drop(["bankrupt_"],axis=1)  def log_trans(data):  for col in data:  skew = data[col].skew()  if skew>=0.5 or skew<=0.5:  data[col] = np.log1p(data[col])  else:  continue  return data  bankruptcy_subdf4_log = log_trans(bankruptcy_subdf4)  
bankruptcy_subdf4_log.head()  

5.2.1 Log转换数据的箱线图
plt.figure(figsize=(30,20))  
boxplot=sns.boxplot(data=bankruptcy_subdf4_log,orient="h")  
boxplot.set(xscale="log")  
plt.show()  

在这里插入图片描述

5.2.2 Log转换后的数据分布可视化
# 在下采样后、去除离群值及log变换后的数据分布的可视化  
compare_subdf2 = bankruptcy_subdf2.drop(["bankrupt_"],axis=1)  cols = list(bankruptcy_subdf4.columns)  
ncols = 8  
nrows = math.ceil(len(cols) / ncols)  fig, ax = plt.subplots(nrows, ncols, figsize = (4.5 * ncols, 4 * nrows))  
for i in range(len(cols)):  sns.kdeplot(bankruptcy_subdf4_log[cols[i]], ax = ax[i // ncols, i % ncols],fill=True,color="red")  sns.kdeplot(bankruptcy_subdf2[cols[i]], ax = ax[i // ncols, i % ncols],color="green")  if i % ncols != 0:  ax[i // ncols, i % ncols].set_ylabel(" ")  
plt.tight_layout()  
plt.show()  
print("Red represents distributions after log transforms, green represents before log transform")  

在这里插入图片描述

红色表示Log变换后的分布,绿色表示Log变换前的分布。(完整数据集:关注@公众号:数据STUDIO,联系云朵君获取)

6 使用Pycaret构建模型

本次模型构建使用的是自动机器学习框架pycaret,如果你还没有安装,可使用下述命令安装即可。

pip install -U --ignore-installed --pre pycaret  

在pycaret中自动完成训练及测试数据的切分工作。

from pycaret.classification import *  
exp_name = setup(data = bankruptcy_subdf4,  target = bankruptcy_subdf3["bankrupt_"])  

compare_models()  

Pycaret显示,3种模型的准确性最高的是

  • LightGBM分类器

  • 梯度提升GBC分类器

  • XGBoost分类器

接下来将使用这5个模型进行超参数调优。

6.1 选定模型交叉验证

LightGBM
print("LGBM Model")  
lgb_clf = create_model("lightgbm")  
lgb_clf_scoregrid = pull()  
LGBM Model  

GBC
print("GBC Model")  
gbc_clf = create_model("gbc")  
gbc_clf_scoregrid = pull()  
GBC Model  

XGBoost
print("XGB Model")  
xgb_clf = create_model("xgboost")  
xgb_clf_scoregrid = pull()  
XGB Model  

7 使用Pycaret进行超参数调优

7.1 模型调优

LightGBM
print("Before Tuning")  
print(lgb_clf_scoregrid.loc[["Mean","Std"]])  
print("")  
lgb_clf = tune_model(lgb_clf,choose_better=True)  
print(lgb_clf)  
Before Tuning  Accuracy     AUC  Recall   Prec.      F1   Kappa     MCC  
Fold                                                            
Mean    0.8433  0.9233  0.8562  0.8497  0.8495  0.6866  0.6929  
Std     0.0524  0.0429  0.0802  0.0681  0.0506  0.1046  0.1048  

GBC
print("Before Tuning")  
print(gbc_clf_scoregrid.loc[["Mean","Std"]])  
print("")  
gbc_clf = tune_model(gbc_clf,choose_better=True)  
print(gbc_clf)  
Before Tuning  Accuracy     AUC  Recall   Prec.      F1   Kappa     MCC  
Fold                                                         
Mean    0.8329  0.9242  0.8558  0.8324  0.8419  0.6649  0.6691  
Std     0.0599  0.0403  0.0634  0.0750  0.0557  0.1204  0.1198  

XGBoost
print("Before Tuning")  
print(xgb_clf_scoregrid.loc[["Mean","Std"]])  
print("")  
xgb_clf = tune_model(xgb_clf,choose_better = True)  
print(xgb_clf)  
Before Tuning  Accuracy     AUC  Recall   Prec.      F1   Kappa     MCC  
Fold                                                            
Mean    0.8400  0.9270  0.8562  0.8410  0.8460  0.6797  0.6852  
Std     0.0582  0.0382  0.0906  0.0586  0.0583  0.1161  0.1187  

7.2 模型集成

  1. Bagged & Boosting 方法

  2. Blending

  3. Stacking

LightGBM
# Original  
print(lgb_clf_scoregrid.loc[['Mean', 'Std']])  # Compare the original against bagged and boosted  # Bagged  
lgb_clf = ensemble_model(lgb_clf,fold =5,choose_better = True)  
# Boosted  
lgb_clf = ensemble_model(lgb_clf,method="Boosting",choose_better = True)  
      Accuracy     AUC  Recall   Prec.      F1   Kappa     MCC  
Fold                                                            
Mean    0.8433  0.9233  0.8562  0.8497  0.8495  0.6866  0.6929  
Std     0.0524  0.0429  0.0802  0.0681  0.0506  0.1046  0.1048

GBC
# Original  
print(gbc_clf_scoregrid.loc[['Mean', 'Std']])  # Compare the original against bagged and boosted  # Bagged  
gbc_clf = ensemble_model(gbc_clf,fold =5,choose_better = True)  
# Boosted  
gbc_clf = ensemble_model(gbc_clf,method="Boosting",choose_better = True)  
      Accuracy     AUC  Recall   Prec.      F1   Kappa     MCC  
Fold                                                            
Mean    0.8329  0.9242  0.8558  0.8324  0.8419  0.6649  0.6691  
Std     0.0599  0.0403  0.0634  0.0750  0.0557  0.1204  0.1198

XGBoost
# Original  
print(xgb_clf_scoregrid.loc[['Mean', 'Std']])  # Compare the original and boosted against bagged and boosted  # Bagged  
xgb_clf = ensemble_model(xgb_clf,fold =5,choose_better = True)  
# Boosted  
xgb_clf = ensemble_model(xgb_clf,method="Boosting",choose_better = True)  
      Accuracy     AUC  Recall   Prec.      F1   Kappa     MCC  
Fold                                                            
Mean    0.8400  0.9270  0.8562  0.8410  0.8460  0.6797  0.6852  
Std     0.0582  0.0382  0.0906  0.0586  0.0583  0.1161  0.1187

7.3.1 Blend Models
blend_models([lgb_clf, gbc_clf, xgb_clf],choose_better=True)  

7.3.2 Stacking
stacker = stack_models(lgb_clf,gbc_clf)  #remove xgb as some issues  

print(stacker)  

8 模型评估

# evaluate_model(lgb_clf)  
# evaluate_model(gbc_clf)  
# evaluate_model(xgb_clf)  

8.1 ROC-AUC

plot_model(stacker, plot = 'auc')     
# Stacked classifier from ensembling  
plot_model(lgb_clf, plot = 'auc')     
# lgb最适合Bagging集成并被选中  
plot_model(gbc_clf, plot = 'auc')     
# gbc最适合Boosting集成并被选中  
plot_model(xgb_clf, plot = 'auc')     
# 基本的xgb分类器在经过调优和集成后仍然表现最好,因此选择了它  

8.2 混淆矩阵

plot_model(stacker,   plot = 'confusion_matrix',   plot_kwargs = {'percent' : True})  
plot_model(lgb_clf,   plot = 'confusion_matrix',   plot_kwargs = {'percent' : True})  
plot_model(gbc_clf,   plot = 'confusion_matrix',   plot_kwargs = {'percent' : True})  
plot_model(xgb_clf,  plot = 'confusion_matrix',   plot_kwargs = {'percent' : True})  

8.3 学习曲线

plot_model(stacker, plot = 'learning')  

plot_model(lgb_clf, plot = 'learning')  

就到这里了!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/579836.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp APP应用程序iOS没有上架到苹果应用商店如何整包更新?

随着移动互联网的快速发展&#xff0c;uni-app 作为一种跨平台开发框架&#xff0c;受到了广泛欢迎。然而&#xff0c;有时候开发者可能会遇到一个问题&#xff1a;如何为已经发布到苹果应用商店的 uni-app APP 进行整包更新&#xff1f;尤其是当应用还没有上架到苹果应用商店时…

nodejs进阶

文章目录 写在前面一、dependencies、devDependencies和peerDependencies区别&#xff1a;二、需要牢记的npm命令2.1 npm init2.2 npm config list2.3 npm配置镜像源 三、npm install 的原理四、package-lock.json的作用五、npm run 的原理六、npx6.1 npx是什么6.2 npx的优势6.…

深信服技术认证“SCSA-S”划重点:文件上传与解析漏洞

为帮助大家更加系统化地学习网络安全知识&#xff0c;以及更高效地通过深信服安全服务认证工程师考核&#xff0c;深信服特别推出“SCSA-S认证备考秘笈”共十期内容&#xff0c;“考试重点”内容框架&#xff0c;帮助大家快速get重点知识~ 划重点来啦 *点击图片放大展示 深信服…

从AMI镜像恢复AWS Amazon Linux 2实例碰到的VNC服务以及Chrome浏览器无法启动的问题

文章目录 小结问题及解决VNC服务无法启动Chrome浏览器无法启动 参考 小结 将Amazon Linux 2保存为AMI (Amazon Machine Images)后&#xff0c;恢复成EC2 Instance (实例)后&#xff0c;VNC服务以及Chrome浏览器无法启动&#xff0c;进行了解决。 问题及解决 如果要将一个EC2…

treeview数据的保存和读取(以表格方式保存)

一个简单的treeivew&#xff0c;以表格方式保存比较简单&#xff0c;遍历所有节点&#xff0c;记录parentNode、node、data即可 parentiddataid002xx2001005xx5000003xx3001006xx6002007xx7001000xx0001001xx1-1004xx4007 如何将表格转为tree数据&#xff0c;代码如下&#xf…

数据结构-十大排序算法

数据结构十大排序算法 十大排序算法分别是直接插入排序、折半插入排序、希尔排序、冒泡排序、快速排序、简单选择排序、堆排序、归并排序、基数排序、外部排序。 其中插入排序包括直接插入排序、折半插入排序、希尔排序&#xff1b;交换排序包括冒泡排序、快速排序&#xff1…

LSTM中文新闻分类源码详解

LSTM中文新闻分类 一、导包二、读取数据三、数据预处理1.分词、去掉停用词和数字、字母转换成小写等2.新闻文本标签数值化 三、创建词汇表/词典1.data.Field()2.空格切分等3.构建词汇表/词典使用训练集构建单词表&#xff0c;vectorsNone:没有使用预训练好的词向量,而是使用的是…

阿里云自建官方Docker仓库镜像提交拉取方法

文章目录 发布镜像到DockerHub发布镜像到自建Docker仓库(Harbor)修改配置文件在Linux服务器中登录Docker打TAGPUSH提交镜像PULL拉取镜像 发布镜像到阿里云容器服务在Linux服务器中登录DockerPUSH提交镜像PULL拉取镜像 发布镜像到DockerHub 本地我们镜像命名可能会不规范&#…

详解Keras3.0 Layer API: LSTM layer

LSTM layer 用于实现长短时记忆网络&#xff0c;它的主要作用是对序列数据进行建模和预测。 遗忘门&#xff08;Forget Gate&#xff09;&#xff1a;根据当前输入和上一个时间步的隐藏状态&#xff0c;计算遗忘门的值。遗忘门的作用是控制哪些信息应该被遗忘&#xff0c;哪些…

C++面试宝典第10题:绘制各种图形

题目 我们需要编写一个图形相关的应用程序,并处理大量图形(Shape)信息,图形有矩形(Rectangle)、正方形(Square)、圆形(Circle)等种类。应用程序需要计算这些图形的面积,并且可能需要在某个设备上进行显示(使用在标准输出上打印信息的方式作为示意)。 (1)请使用面…

华为——使用ACL限制内网主机访问外网网站示例

组网图形 图1 使用ACL限制内网主机访问外网网站示例 ACL简介配置注意事项组网需求配置思路操作步骤配置文件 ACL简介 访问控制列表ACL&#xff08;Access Control List&#xff09;是由一条或多条规则组成的集合。所谓规则&#xff0c;是指描述报文匹配条件的判断语句&#…

大数据开发之Sqoop详细介绍

测试环境 CDH 6.3.1 Sqoop 1.4.7 一.Sqoop概述 Apache Sqoop&#xff08;SQL-to-Hadoop&#xff09;项目旨在协助RDBMS与Hadoop之间进行高效的大数据交流。用户可以在 Sqoop 的帮助下&#xff0c;轻松地把关系型数据库的数据导入到 Hadoop 与其相关的系统 (如HBase和Hive)中&…

IRIS、Cache系统类汉化

文章目录 系统类汉化简介标签说明汉化系统包说明效果展示类分类%Library包下的类重点类非重点类弃用类数据类型类工具类 使用说明 系统类汉化 简介 帮助小伙伴更加容易理解后台系统程序方法使用&#xff0c;降低代码的难度。符合本土化中文环境的开发和维护&#xff0c;有助于…

年底大厂今年发多少年终奖,怎么发(上)?

马上就2023年年底了&#xff0c;互联网大厂腾讯员工首先&#xff0c;发年终奖了&#xff0c;111354 元&#xff01; 腾讯的同学可以查一查了&#xff0c;应该发多少已经定下来了&#xff01;&#x1f44b; 除此之外&#xff0c;千寻找了很多的大厂的年终奖发放时间&#xff0c;…

Android Studio 如何隐藏默认标题栏

目录 前言 一、修改清单文件 二、修改代码 三、更多资源 前言 在 Android 应用中&#xff0c;通常会有一个默认的标题栏&#xff0c;用于显示应用的名称和一些操作按钮。但是&#xff0c;在某些情况下&#xff0c;我们可能需要隐藏默认的标题栏&#xff0c;例如自定义标题栏…

时序预测 | Matlab实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测

时序预测 | Matlab实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测 目录 时序预测 | Matlab实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短…

【HarmonyOS开发】探究Hap与App包的结构与区别

1、Hap与App包的区别 OpenHarmony 可以进行两种形式&#xff08;Hap和App&#xff09;的打包&#xff0c;HAP是用于本地调试的&#xff0c;APP包是用于上架发布的。 根据不同的设备类型&#xff0c;一个APP包可以包含多个HAP包。 下面从两个角度进行分析 1.1 编译构建角度 编…

uniapp中uview的text组件

基本使用&#xff1a; 通过text参数设置文本内容。推荐您使用:textvalue的形式 <u--text text"我用十年青春,赴你最后之约"></u--text>设置主题&#xff1a; 通过type参数设置文本主题&#xff0c;我们提供了五类属性。primary error success warning…

【leetcode100-021】【矩阵】搜索二维矩阵 II

【题干】 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性&#xff1a; 每行的元素从左到右升序排列。每列的元素从上到下升序排列。 【思路】 以右上角为起点斜着看这个矩阵&#xff0c;会发现&#xff0c;这是一颗二叉搜索树。 …

中间件系列 - Redis入门到实战(高级篇-分布式缓存)

前言 学习视频&#xff1a; 黑马程序员Redis入门到实战教程&#xff0c;深度透析redis底层原理redis分布式锁企业解决方案黑马点评实战项目 本内容仅用于个人学习笔记&#xff0c;如有侵扰&#xff0c;联系删除 学习目标 Redis持久化Redis主从Redis哨兵Redis分片集群 一 分…