[足式机器人]Part4 南科大高等机器人控制课 CH11 Bascis of Optimization

本文仅供学习使用
本文参考:
B站:CLEAR_LAB
笔者带更新-运动学
课程主讲教师:
Prof. Wei Zhang
课程链接 :
https://www.wzhanglab.site/teaching/mee-5114-advanced-control-for-robotics/

南科大高等机器人控制课 Ch11 Bascis of Optimization

  • 1. Motivation
  • 2. Some Linear Algebra
    • 2.1 Real Symmetric Matrices
    • 2.2 Positive Semidefinite Matrices
  • 3. Set and Functions
    • 3.1 Affine Sets and Functions
    • 3.2 Qyadratic Sets and Functions
    • 3.3 Convex Set
    • 3.4 Cone
    • 3.5 Positve Semidefinite Cone
    • 3.6 Operations that Preserve Convexity
    • 3.7 Convex Function
    • 3.8 How to Check a Function of Convex?
    • 3.9 Example of Convex Functions
  • 4. Short Introduction to Optimization
    • 4.1 Nonlinear Optimiazation Problems
    • 4.2 Lagrangian
      • 4.2.1 Lagrangian Dual Problems
      • 4.2.2 Duality Theorems
    • 4.3 General Optimality Conditions
    • 4.4 KKT Conditions
  • 5. Linear Program
  • 6. Quadratic Program


1. Motivation

Optimization is argulably the most important tool for modern engineering

Robotics:

  • Differential Inverse Kinematics
  • Dynamics : ABA(most efficient dynamics algorithm) and LQR
  • Motion planning
  • Whole-body control: formulated as a quadratic program
  • SLAM
  • Preception

Machine Learning

  • Linear regression
  • Support vector machine
  • Deep learning —— minimize ‘loss’ function

Other domains

  • Check system stability : SDP
  • Compressive sensing
  • Fourier transform : keast square problem

Roughly speaking, most engineering problems (finding a better design, ensure certain properties of the solution, develop an algorithm), can be formulated as optimization / optimal control problems.
在这里插入图片描述
Our goal :

  • Basic knowledge/key concepts of opt. theory
  • Formulate / Reformulate opt. problem
  • Educated users of tools/packages

2. Some Linear Algebra

2.1 Real Symmetric Matrices

S n ∈ R n × n \mathcal{S} ^n\in \mathbb{R} ^{n\times n} SnRn×n : set of real symmetric matrices in R n \mathbb{R} ^n Rn , A ∈ S n ⇔ A T = A A\in \mathcal{S} ^n\Leftrightarrow A^{\mathrm{T}}=A ASnAT=A

All eigenvalues are real (diagonalizable) —— Important

There exists a full set of orthogonal eigenvectors A ∈ S n , A = T Λ T − 1 A\in \mathcal{S} ^n,A=T\varLambda T^{-1} ASn,A=TΛT1 nonsigular matrix

Spectral decomposition : If A ∈ S n A\in \mathcal{S} ^n ASn , then A = Q Λ Q − 1 A=Q\varLambda Q^{-1} A=QΛQ1 , where Λ \varLambda Λ diagonal and Q Q Q is unitary —— Q T Q = E Q^{\mathrm{T}}Q=E QTQ=E Q = [ q 1 , . . . , q n ] Q=\left[ q_1,...,q_{\mathrm{n}} \right] Q=[q1,...,qn] q i q_{\mathrm{i}} qi is i i ith-column of Q Q Q —— ⇒ q i T q j = { 0 i = j 1 o t h e r w i s e \Rightarrow {q_{\mathrm{i}}}^{\mathrm{T}}q_{\mathrm{j}}=\begin{cases} 0 i=j\\ 1 otherwise\\ \end{cases} qiTqj={0i=j1otherwise , { q i } \left\{ q_{\mathrm{i}} \right\} {qi} orthonormal

2.2 Positive Semidefinite Matrices

A ∈ S n A\in \mathcal{S} ^n ASn is called positive semidefinite(PSD), denoted by A ⪰ 0 A\succeq 0 A0 , if x T A x ⩾ 0 , ∀ x ∈ R n x^{\mathrm{T}}Ax\geqslant 0,\forall x\in \mathbb{R} ^n xTAx0,xRn

A ∈ S n A\in \mathcal{S} ^n ASn is called positive definite(PD) , denoted by A ≻ 0 A\succ 0 A0 , x T A x > 0 x^{\mathrm{T}}Ax>0 xTAx>0 for all nonzero x ∈ R n x\in \mathbb{R} ^n xRn

S + n \mathcal{S} _{+}^{n} S+n : set of all PSD (symmetric) matrices

S + + n \mathcal{S} _{++}^{n} S++n : set of all PD (symmetric) matrices

PSD or PD matrices can also be defined for non-symmetric matrices : e.g. [ 1 1 − 1 1 ] ⇒ x T [ 1 1 − 1 1 ] x = x 1 2 + x 2 2 \left[ \begin{matrix} 1& 1\\ -1& 1\\ \end{matrix} \right] \Rightarrow x^{\mathrm{T}}\left[ \begin{matrix} 1& 1\\ -1& 1\\ \end{matrix} \right] x={x_1}^2+{x_2}^2 [1111]xT[1111]x=x12+x22

We assume PSD and PD are symmetric (unless otherwise noted)

Notation : A ⪰ B A\succeq B AB (resp. A ≻ B A\succ B AB) means A − B ∈ S + n A-B\in \mathcal{S} _{+}^{n} ABS+n (resp. A − B ∈ S + + n A-B\in \mathcal{S} _{++}^{n} ABS++n) —— A − B A-B AB PSD - defined a partial order on S n \mathcal{S} ^n Sn —— It is possible to have A ⊁ B , A ⋡ B A\nsucc B,A\nsucceq B AB,AB

Other equivalent definitions for symmetric PSD matrices :

  • All 2 n − 1 2^n-1 2n1 principal minors of A A A are nonnegative
  • All eigs of A A A are nonnegative
  • There exists a factorization A = B T B A=B^{\mathrm{T}}B A=BTB

Other equivalent definitions for symmetric PD matrices :

  • All n n n principal minors of A A A are positive
  • All eigs of A A A are strictly positive
  • There exists a factorization A = B T B A=B^{\mathrm{T}}B A=BTB with B B B square and nonsingular
    If A > 0 A>0 A>0 , A = Q Λ Q T = Q Λ 1 2 Λ 1 2 Q T = B T B , B = Λ 1 2 Q T A=Q\varLambda Q^{\mathrm{T}}=Q\varLambda ^{\frac{1}{2}}\varLambda ^{\frac{1}{2}}Q^{\mathrm{T}}=B^{\mathrm{T}}B, B=\varLambda ^{\frac{1}{2}}Q^{\mathrm{T}} A=QΛQT=QΛ21Λ21QT=BTB,B=Λ21QT

Useful facts :

  • If T T T nonsigular(doesn’t need to unitary) , A ≻ 0 ⇔ T T A T ≻ 0 A\succ 0\Leftrightarrow T^{\mathrm{T}}AT\succ 0 A0TTAT0 and A ⪰ 0 ⇔ T T A T ⪰ 0 A\succeq 0\Leftrightarrow T^{\mathrm{T}}AT\succeq 0 A0TTAT0
    Recall : T A T − 1 TAT^{-1} TAT1 : similarity transformation S + n \mathcal{S} _{+}^{n} S+n ; T T A T T^{\mathrm{T}}AT TTAT: congruent transformation S + + n \mathcal{S} _{++}^{n} S++n —— are invariant under congruent transformation

  • Inner product on R m × n \mathbb{R} ^{m\times n} Rm×n : < A , B > = t r ( A T B ) = A ⋅ B <A,B>=tr\left( A^{\mathrm{T}}B \right) =A\cdot B <A,B>=tr(ATB)=AB
    ∀ A ∈ R m × n , B ∈ R m × n t r ( A T B ) = ∑ i = 1 m ∑ j = 1 n A i j B i j \forall A\in \mathbb{R} ^{m\times n},B\in \mathbb{R} ^{m\times n}\,\,tr\left( A^{\mathrm{T}}B \right) =\sum_{i=1}^m{\sum_{j=1}^n{A_{\mathrm{ij}}B_{\mathrm{ij}}}} ARm×n,BRm×ntr(ATB)=i=1mj=1nAijBij , Angle between A , B A,B A,B cos ⁡ θ = < A , B > < A , A > < B , B > , { A ⊥ B ⇒ t r ( A T B ) = 0 t r ( A T B ) > 0 ⇒ a c u t e \cos \theta =\frac{<A,B>}{\sqrt{<A,A><B,B>}},\begin{cases} A\bot B\Rightarrow tr\left( A^{\mathrm{T}}B \right) =0\\ tr\left( A^{\mathrm{T}}B \right) >0\Rightarrow acute\\ \end{cases} cosθ=<A,A><B,B> <A,B>,{ABtr(ATB)=0tr(ATB)>0acute

  • For A , B ∈ S + n , t r ( A B ) > 0 A,B\in \mathcal{S} _{+}^{n},tr\left( AB \right) >0 A,BS+n,tr(AB)>0 —— A , B A,B A,B square symmetric PSD : < A , B > = t r ( A T B ) = t r ( A B ) ⇒ t r ( A B ) ⩾ 0 <A,B>=tr\left( A^{\mathrm{T}}B \right) =tr\left( AB \right) \Rightarrow tr\left( AB \right) \geqslant 0 <A,B>=tr(ATB)=tr(AB)tr(AB)0

  • For ant symmetric A ∈ S n A\in \mathcal{S} ^n ASn , λ min ⁡ ( A ) ⩾ μ ⇔ A ⪰ μ E \lambda _{\min}\left( A \right) \geqslant \mu \Leftrightarrow A\succeq \mu E λmin(A)μAμE and λ max ⁡ ( A ) ⩽ β ⇔ A ⪯ β E \lambda _{\max}\left( A \right) \leqslant \beta \Leftrightarrow A\preceq \beta E λmax(A)βAβE (easy proof)

3. Set and Functions

3.1 Affine Sets and Functions

Linear mapping : f ( x + y ) = f ( x ) + f ( y ) , f ( α x ) = α f ( x ) f\left( x+y \right) =f\left( x \right) +f\left( y \right) ,f\left( \alpha x \right) =\alpha f\left( x \right) f(x+y)=f(x)+f(y),f(αx)=αf(x) , for any x , y x,y x,y in some vector space , and α ∈ R \alpha \in \mathbb{R} αR

Examples:

  • f ( x ) = A x , x ∈ R 3 , A ∈ S O ( 3 ) f\left( x \right) =Ax,x\in \mathbb{R} ^3,A\in SO\left( 3 \right) f(x)=Ax,xR3,ASO(3)
  • f ( x ) = ∫ x ( τ ) d τ f\left( x \right) =\int{x\left( \tau \right) d\tau} f(x)=x(τ)dτ , for all integrable function x ( ⋅ ) x\left( \cdot \right) x()
  • E ( x ) E\left( x \right) E(x) expection of random variable/vector x x x —— E ( x ) = ∫ x f ( x ) d x E\left( x \right) =\int{xf\left( x \right) dx} E(x)=xf(x)dx
  • f ( x ) = t r ( x ) , x ∈ R n × n f\left( x \right) =tr\left( x \right) ,x\in \mathbb{R} ^{n\times n} f(x)=tr(x),xRn×n

Affine mapping : f ( x ) f\left( x \right) f(x) is an affine mapping of x x x if g ( x ) = f ( x ) − f ( x 0 ) g\left( x \right) =f\left( x \right) -f\left( x_0 \right) g(x)=f(x)f(x0) is a linear mapping for some fixed x 0 x_0 x0

Finite-deimension representation fo affine function : f ( x ) = A x + b f\left( x \right) =Ax+b f(x)=Ax+b —— g ( x ) = f ( x ) − f ( 0 ) = A x + b − b = A x g\left( x \right) =f\left( x \right) -f\left( 0 \right) =Ax+b-b=Ax g(x)=f(x)f(0)=Ax+bb=Ax

Homogeneous representation in R n \mathbb{R} ^n Rn : f ( x ) = A x + b ⇔ f ^ ( x ) = A ^ x ^ , A ^ = [ A b 0 1 ] , x ^ = [ x 1 ] f\left( x \right) =Ax+b\Leftrightarrow \hat{f}\left( x \right) =\hat{A}\hat{x},\hat{A}=\left[ \begin{matrix} A& b\\ 0& 1\\ \end{matrix} \right] ,\hat{x}=\left[ \begin{array}{c} x\\ 1\\ \end{array} \right] f(x)=Ax+bf^(x)=A^x^,A^=[A0b1],x^=[x1]

Linear and affine are often used interchangeably

Linear/affine sets: { x : f ( x ) ⩽ 0 } \left\{ x:f\left( x \right) \leqslant 0 \right\} {x:f(x)0} ofr affine mapping f f f

  • Line/hyperplane : a T x = b a^{\mathrm{T}}x=b aTx=b
    a T x = b ⇒ a T ( x − x 0 ) = 0 ⇒ a T x − a T x 0 = 0 , a T x 0 = b a^{\mathrm{T}}x=b\Rightarrow a^{\mathrm{T}}\left( x-x_0 \right) =0\Rightarrow a^{\mathrm{T}}x-a^{\mathrm{T}}x_0=0,a^{\mathrm{T}}x_0=b aTx=baT(xx0)=0aTxaTx0=0,aTx0=b
  • Half space : a T x ⩽ b a^{\mathrm{T}}x\leqslant b aTxb —— a T x − a T x 0 ⩽ 0 a^{\mathrm{T}}x-a^{\mathrm{T}}x_0\leqslant 0 aTxaTx00
  • Polyhedron : H x ⩽ h Hx\leqslant h Hxh —— H ∈ R m × n , x ∈ R n , h ∈ R m H\in \mathbb{R} ^{m\times n},x\in \mathbb{R} ^n,h\in \mathbb{R} ^m HRm×n,xRn,hRm
    [ H 1 T ⋮ H m T ] x ⩽ [ h 1 ⋮ h m ] \left[ \begin{array}{c} {H_1}^{\mathrm{T}}\\ \vdots\\ {H_{\mathrm{m}}}^{\mathrm{T}}\\ \end{array} \right] x\leqslant \left[ \begin{array}{c} h_1\\ \vdots\\ h_{\mathrm{m}}\\ \end{array} \right] H1THmT x h1hm —— Imposes m m m inequality H i T x ⩽ h i {H_{\mathrm{i}}}^{\mathrm{T}}x\leqslant h_{\mathrm{i}} HiTxhi —— half space
  • For matrix variable X ∈ R n × n X\in \mathbb{R} ^{n\times n} XRn×n, t r ( A X ) ⩽ 0 tr\left( AX \right) \leqslant 0 tr(AX)0 for given constant matrix A ∈ R n × n A\in \mathbb{R} ^{n\times n} ARn×n is halfspace in R n × n \mathbb{R} ^{n\times n} Rn×n
    在这里插入图片描述

3.2 Qyadratic Sets and Functions

Quadratic functions in R n \mathbb{R} ^n Rn : f ( x ) = x T A x + b T x + c , x = [ x 1 ⋮ x n ] , f : R n → R f\left( x \right) =x^{\mathrm{T}}Ax+b^{\mathrm{T}}x+c,x=\left[ \begin{array}{c} x_1\\ \vdots\\ x_{\mathrm{n}}\\ \end{array} \right] ,f:\mathbb{R} ^n\rightarrow \mathbb{R} f(x)=xTAx+bTx+c,x= x1xn ,f:RnR

Quadratic functions (honogeneous form) : x ^ = [ x 1 ] , f ^ ( x ) = [ x 1 ] T [ A b 2 b 2 c ] [ x 1 ] \hat{x}=\left[ \begin{array}{c} x\\ 1\\ \end{array} \right] ,\hat{f}\left( x \right) =\left[ \begin{array}{c} x\\ 1\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{matrix} A& \frac{b}{2}\\ \frac{b}{2}& c\\ \end{matrix} \right] \left[ \begin{array}{c} x\\ 1\\ \end{array} \right] x^=[x1],f^(x)=[x1]T[A2b2bc][x1] —— f ^ ( x ) = x ^ T A ^ x ^ \hat{f}\left( x \right) =\hat{x}^{\mathrm{T}}\hat{A}\hat{x} f^(x)=x^TA^x^ ( A ∈ S + n ⇔ f ( x ) ⩾ 0 , ∀ x ∈ R n A\in \mathcal{S} _{+}^{n}\Leftrightarrow f\left( x \right) \geqslant 0,\forall x\in \mathbb{R} ^n AS+nf(x)0,xRn) —— f f f - PSD f ( x ) > 0 f\left( x \right) >0 f(x)>0 for all x ≠ 0 x\ne 0 x=0 ; f ( x ) = 0 f\left( x \right) =0 f(x)=0 for all x = 0 x=0 x=0

Quadratic sets : { x ∈ R n : f ( x ) ⩽ 0 } \left\{ x\in \mathbb{R} ^n:f\left( x \right) \leqslant 0 \right\} {xRn:f(x)0} for some quadratic function f f f
eg1: Ball —— { x ∈ R n ∥ x − x c ∥ 2 ⩽ r c 2 } \left\{ x\in \mathbb{R} ^n\left\| x-x_{\mathrm{c}} \right\| ^2\leqslant {r_{\mathrm{c}}}^2 \right\} {xRnxxc2rc2} ⇒ f ( x ) = ( x − x c ) T ( x − x c ) − r c 2 ⩽ 0 \Rightarrow f\left( x \right) =\left( x-x_{\mathrm{c}} \right) ^{\mathrm{T}}\left( x-x_{\mathrm{c}} \right) -{r_{\mathrm{c}}}^2\leqslant 0 f(x)=(xxc)T(xxc)rc20
eg2 : Ellipsoid : { x ∈ R n ( x − x c ) T P − 1 ( x − x c ) ⩽ 1 , P ∈ S + + n } \left\{ x\in \mathbb{R} ^n\left( x-x_{\mathrm{c}} \right) ^{\mathrm{T}}P^{-1}\left( x-x_{\mathrm{c}} \right) \leqslant 1,P\in \mathcal{S} _{++}^{n} \right\} {xRn(xxc)TP1(xxc)1,PS++n}

3.3 Convex Set

Convex Set : A set S S S is convex if any line segment stays in the set
x 1 , x 2 ∈ S ⇒ α x 1 + ( 1 − α ) x 2 ∈ S , ∀ α ∈ [ 0 , 1 ] ⇒ α 1 x 1 + α 2 x 2 , α 1 + α 2 = 1 , α 1 ⩾ 0 , α 2 ⩾ 0 x_1,x_2\in S\Rightarrow \alpha x_1+\left( 1-\alpha \right) x_2\in S,\forall \alpha \in \left[ 0,1 \right] \Rightarrow \alpha _1x_1+\alpha _2x_2,\alpha _1+\alpha _2=1,\alpha _1\geqslant 0,\alpha _2\geqslant 0 x1,x2Sαx1+(1α)x2S,α[0,1]α1x1+α2x2,α1+α2=1,α10,α20

  • convex combination of x 1 , x 2 x_1,x_2 x1,x2
    在这里插入图片描述

Convex combination of x 1 , . . . , x k x_1,...,x_{\mathrm{k}} x1,...,xk :
{ α 1 x 1 + α 2 x 2 + . . . + α k x k : α i ⩾ 0 , ∑ i α i = 1 } \left\{ \alpha _1x_1+\alpha _2x_2+...+\alpha _{\mathrm{k}}x_{\mathrm{k}}:\alpha _{\mathrm{i}}\geqslant 0,\sum_i{\alpha _{\mathrm{i}}}=1 \right\} {α1x1+α2x2+...+αkxk:αi0,iαi=1}

Convex hull-凸包 : c o ‾ { S } \overline{co}\left\{ S \right\} co{S} set of all convex combinations of points in S S S

3.4 Cone

A set S S S is called a cone if λ > 0 , x ∈ S ⇒ λ x ∈ S \lambda >0,x\in S\Rightarrow \lambda x\in S λ>0,xSλxS
在这里插入图片描述
Conic-圆锥的 combination of x 1 x_1 x1 and x 2 x_2 x2 : x = α 1 x 1 + α 2 x 2 , α 1 ⩾ 0 , α 2 ⩾ 0 x=\alpha _1x_1+\alpha _2x_2,\alpha _1\geqslant 0,\alpha _2\geqslant 0 x=α1x1+α2x2,α10,α20 —— c o n e ( x 1 , . . . , x k ) = { ∑ i α i x i : α i ⩾ 0 } cone\left( x_1,...,x_{\mathrm{k}} \right) =\left\{ \sum_i{\alpha _{\mathrm{i}}x_{\mathrm{i}}}:\alpha _{\mathrm{i}}\geqslant 0 \right\} cone(x1,...,xk)={iαixi:αi0}

Convex cone:

  1. a cone that is convex
  2. equivalently,a set that contains all the conic combinations of points in the set

3.5 Positve Semidefinite Cone

The set of positive semidefinite matrices(i.e, S + n \mathcal{S} _{+}^{n} S+n is a convex cone and is referred to as the positive semidefinite(PSD) cone) —— S + n \mathcal{S} _{+}^{n} S+n : set of PSD A ∈ S + n ⇒ λ A ⩾ 0 ⇒ λ A ∈ S + n A\in \mathcal{S} _{+}^{n}\Rightarrow \lambda A\geqslant 0\Rightarrow \lambda A\in \mathcal{S} _{+}^{n} AS+nλA0λAS+n S + n \mathcal{S} _{+}^{n} S+n is a cone
By definition : pick arbitrary A , B ∈ S + n A,B\in \mathcal{S} _{+}^{n} A,BS+n , α A + ( 1 − α ) B ∈ S + n , α ∈ [ 0 , 1 ] \alpha A+\left( 1-\alpha \right) B\in \mathcal{S} _{+}^{n},\alpha \in \left[ 0,1 \right] αA+(1α)BS+n,α[0,1] ( ⇒ x T ( α A + ( 1 − α ) B ) x = α x T A x + ( 1 − α ) x T B x ⩾ 0 \Rightarrow x^{\mathrm{T}}\left( \alpha A+\left( 1-\alpha \right) B \right) x=\alpha x^{\mathrm{T}}Ax+\left( 1-\alpha \right) x^{\mathrm{T}}Bx\geqslant 0 xT(αA+(1α)B)x=αxTAx+(1α)xTBx0)

Recall that if A , B ∈ S + n A,B\in \mathcal{S} _{+}^{n} A,BS+n , then t r ( A B ) ⩾ 0 tr\left( AB \right) \geqslant 0 tr(AB)0 . This indicates that the cone S + n \mathcal{S} _{+}^{n} S+n is acute.

x 1 ∈ R n , x 2 ∈ R n x_1\in \mathbb{R} ^n,x_2\in \mathbb{R} ^n x1Rn,x2Rn
α 1 x 1 + α 2 x 2 \alpha _1x_1+\alpha _2x_2 α1x1+α2x2 linear combination
α 1 x 1 + α 2 x 2 \alpha _1x_1+\alpha _2x_2 α1x1+α2x2 α 1 ⩾ 0 , α 2 ⩾ 0 \alpha _1\geqslant 0,\alpha _2\geqslant 0 α10,α20 conic combination
α 1 x 1 + α 2 x 2 \alpha _1x_1+\alpha _2x_2 α1x1+α2x2 α 1 ⩾ 0 , α 2 ⩾ 0 \alpha _1\geqslant 0,\alpha _2\geqslant 0 α10,α20 α 1 + α 2 = 1 \alpha _1+\alpha _2=1 α1+α2=1 convex combination

3.6 Operations that Preserve Convexity

Intersection of possibly infinite number of convex sets is convex
eg: polyhedron —— H 1 T x ⩽ h 1 , H 2 T x ⩽ h 2 , [ H 1 T H 2 T ] x ⩽ [ h 1 h 2 ] {H_1}^{\mathrm{T}}x\leqslant h_1,{H_2}^{\mathrm{T}}x\leqslant h_2,\left[ \begin{array}{c} {H_1}^{\mathrm{T}}\\ {H_2}^{\mathrm{T}}\\ \end{array} \right] x\leqslant \left[ \begin{array}{c} h_1\\ h_2\\ \end{array} \right] H1Txh1,H2Txh2,[H1TH2T]x[h1h2]
eg: PSD cone

Affine mapping f : R n → R m f:\mathbb{R} ^n\rightarrow \mathbb{R} ^m f:RnRm (i.e. f ( x ) = A x + b f\left( x \right) =Ax+b f(x)=Ax+b)

  • f ( X ) = { f ( x ) : x ∈ X } f\left( X \right) =\left\{ f\left( x \right) :x\in X \right\} f(X)={f(x):xX} is convex whenever X ⊆ R n X\subseteq \mathbb{R} ^n XRn is convex
    e.g. : Ellipsoid : E 1 = { x ∈ R n : ( x − x c ) T P − 1 ( x − x c ) ⩽ 1 } E_1=\left\{ x\in \mathbb{R} ^n:\left( x-x_{\mathrm{c}} \right) ^{\mathrm{T}}P^{-1}\left( x-x_{\mathrm{c}} \right) \leqslant 1 \right\} E1={xRn:(xxc)TP1(xxc)1} or E 2 = { x c + A u : ∥ u ∥ 2 ⩽ 1 } E_2=\left\{ x_{\mathrm{c}}+Au:\left\| u \right\| _2\leqslant 1 \right\} E2={xc+Au:u21}
  • f − 1 ( Y ) = { x ∈ R n : f ( x ) ∈ Y } f^{-1}\left( Y \right) =\left\{ x\in \mathbb{R} ^n:f\left( x \right) \in Y \right\} f1(Y)={xRn:f(x)Y} is convex whenever Y ⊆ R m Y\subseteq \mathbb{R} ^m YRm is convex
    e.g. { A x ⩽ b } = f − 1 ( R + n ) \left\{ Ax\leqslant b \right\} =f^{-1}\left( \mathbb{R} _{+}^{n} \right) {Axb}=f1(R+n) , where R + n \mathbb{R} _{+}^{n} R+n in nonnegative orthant

3.7 Convex Function

Consider a finite dimensional vector space χ \chi χ . Let D ⊂ χ \mathcal{D} \subset \chi Dχ be convex

Definition 1 (Convex Function)
A function f : D → R f:\mathcal{D} \rightarrow \mathbb{R} f:DR is called convex if
f ( α x 1 + ( 1 − α ) x 2 ) ⩽ α f ( x 1 ) + ( 1 − α ) f ( x 2 ) , ∀ x 1 , x 2 ∈ D , ∀ α ∈ [ 0 , 1 ] f\left( \alpha x_1+\left( 1-\alpha \right) x_2 \right) \leqslant \alpha f\left( x_1 \right) +\left( 1-\alpha \right) f\left( x_2 \right) ,\forall x_1,x_2\in \mathcal{D} ,\forall \alpha \in \left[ 0,1 \right] f(αx1+(1α)x2)αf(x1)+(1α)f(x2),x1,x2D,α[0,1]
在这里插入图片描述

  • f : D → R f:\mathcal{D} \rightarrow \mathbb{R} f:DR is called strictly convex if
    f ( α x 1 + ( 1 − α ) x 2 ) < α f ( x 1 ) + ( 1 − α ) f ( x 2 ) , ∀ x 1 ≠ x 2 ∈ D , ∀ α ∈ [ 0 , 1 ] f\left( \alpha x_1+\left( 1-\alpha \right) x_2 \right) <\alpha f\left( x_1 \right) +\left( 1-\alpha \right) f\left( x_2 \right) ,\forall x_1\ne x_2\in \mathcal{D} ,\forall \alpha \in \left[ 0,1 \right] f(αx1+(1α)x2)<αf(x1)+(1α)f(x2),x1=x2D,α[0,1]
  • f : D → R f:\mathcal{D} \rightarrow \mathbb{R} f:DR is called concave if − f -f f is convex

3.8 How to Check a Function of Convex?

Directly use definition

  • First-order condition : if f f f is differentiable over an open set that contains D \mathcal{D} D , then f f f is convex over D \mathcal{D} D iff(if and only if) —— stay above Taylor around x x x
    f ( z ) ⩾ f ( x ) + ∇ f ( x ) T ( z − x ) , ∀ x , z ∈ D f\left( z \right) \geqslant f\left( x \right) +\nabla f\left( x \right) ^{\mathrm{T}}\left( z-x \right) ,\forall x,z\in \mathcal{D} f(z)f(x)+f(x)T(zx),x,zD
  • Second-order condition: Suppose f f f is twicely differentiable over an open set that contains D \mathcal{D} D , then f f f is convex over D \mathcal{D} D iff
    ∇ 2 f ( x ) ⪰ 0 \nabla ^2f\left( x \right) \succeq 0 2f(x)0
    (concave ∇ 2 f ( x ) ⪯ 0 \nabla ^2f\left( x \right) \preceq 0 2f(x)0)
    Many other conditions , tricks,…

3.9 Example of Convex Functions

In general , affine functions are both convex and concave
e.g. : f ( x ) = a T x + b , x ∈ R n f\left( x \right) =a^{\mathrm{T}}x+b,x\in \mathbb{R} ^n f(x)=aTx+b,xRn
e.g. : f ( X ) = t r ( A T X ) + c = ∑ i = 1 m ∑ j = 1 n A i j X i j + c , X ∈ R m × n f\left( X \right) =tr\left( A^{\mathrm{T}}X \right) +c=\sum_{i=1}^m{\sum_{j=1}^n{A_{\mathrm{ij}}X_{\mathrm{ij}}+c}},X\in \mathbb{R} ^{m\times n} f(X)=tr(ATX)+c=i=1mj=1nAijXij+c,XRm×n
f : R m × n → s c a l a r f:\mathbb{R} ^{m\times n}\rightarrow scalar f:Rm×nscalar / affine func of X X X (matrix)

Quadratic functions : f ( x ) = x T Q x + b T x + c f\left( x \right) =x^{\mathrm{T}}Qx+b^{\mathrm{T}}x+c f(x)=xTQx+bTx+c is convex iff Q ⪰ 0 Q\succeq 0 Q0
unsing 2nd-order condition ∇ 2 f ( x ) = [ ∂ 2 f ∂ x 1 ∂ x 1 ∂ 2 f ∂ x 1 ∂ x 2 ⋯ ⋮ ∂ 2 f ∂ x 2 ∂ x 2 ⋯ ⋮ ⋮ ⋱ ] = Q \nabla ^2f\left( x \right) =\left[ \begin{matrix} \frac{\partial ^2f}{\partial x_1\partial x_1}& \frac{\partial ^2f}{\partial x_1\partial x_2}& \cdots\\ \vdots& \frac{\partial ^2f}{\partial x_2\partial x_2}& \cdots\\ \vdots& \vdots& \ddots\\ \end{matrix} \right] =Q 2f(x)= x1x12fx1x22fx2x22f =Q

All norms are convex
e.g. : in R n \mathbb{R} ^n Rn : f ( x ) = ∥ x ∥ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 / p f\left( x \right) =\left\| x \right\| _{\mathrm{p}}=\left( \sum_{i=1}^n{\left| x_{\mathrm{i}} \right|^p} \right) ^{1/p} f(x)=xp=(i=1nxip)1/p , ∥ x ∥ ∞ = max ⁡ k ∣ x k ∣ \left\| x \right\| _{\infty}=\max _{\mathrm{k}}\left| x_{\mathrm{k}} \right| x=maxkxk
e.g. : in R m × n \mathbb{R} ^{m\times n} Rm×n : f ( X ) = ∥ X ∥ 2 = σ max ⁡ f\left( X \right) =\left\| X \right\| _2=\sigma _{\max} f(X)=X2=σmax

Affine mapping of convex func is still convex
e.g. : suppose f ( x ) f\left( x \right) f(x) convex ⇒ \Rightarrow g ( x ) = a f ( x ) + b g\left( x \right) =af\left( x \right) +b g(x)=af(x)+b is also convex

Pointwise maximum of convex func is convex
e.g. : suppose f 1 ( x ) , f 2 ( x ) f_1\left( x \right) ,f_2\left( x \right) f1(x),f2(x) are convex ⇒ \Rightarrow g ( x ) = max ⁡ { f 1 ( x ) , f 2 ( x ) } g\left( x \right) =\max \left\{ f_1\left( x \right) ,f_2\left( x \right) \right\} g(x)=max{f1(x),f2(x)} is convex
在这里插入图片描述
e.g. : suppose f ( x , θ ) f\left( x,\theta \right) f(x,θ) is convex for each θ ∈ [ 1 , 2 ] \theta \in \left[ 1,2 \right] θ[1,2] , then g ( x ) = max ⁡ θ ∈ [ 1 , 2 ] { f ( x , θ ) } g\left( x \right) =\underset{\theta \in \left[ 1,2 \right]}{\max}\left\{ f\left( x,\theta \right) \right\} g(x)=θ[1,2]max{f(x,θ)} convex —— f ( x , θ ) = θ x + b f\left( x,\theta \right) =\theta x+b f(x,θ)=θx+b ⇒ \Rightarrow g ( x ) = max ⁡ θ ∈ [ 1 , 2 ] { θ x + b } g\left( x \right) =\underset{\theta \in \left[ 1,2 \right]}{\max}\left\{ \theta x+b \right\} g(x)=θ[1,2]max{θx+b}

Pointwise minimum of concave func is concave —— S ( x ) = min ⁡ θ ∈ [ 1 , 2 ] { θ x + b } S\left( x \right) =\underset{\theta \in \left[ 1,2 \right]}{\min}\left\{ \theta x+b \right\} S(x)=θ[1,2]min{θx+b} is concave

4. Short Introduction to Optimization

4.1 Nonlinear Optimiazation Problems

Nonlinear Optimiazation: Primal problem
minimize : f 0 ( x ) f_0\left( x \right) f0(x) —— cost func f : R n → R f:\mathbb{R} ^n\rightarrow \mathbb{R} f:RnR , x = [ x 1 ⋮ x n ] ∈ R n x=\left[ \begin{array}{c} x_1\\ \vdots\\ x_{\mathrm{n}}\\ \end{array} \right] \in \mathbb{R} ^n x= x1xn Rn
subject to : f i ( x ) ⩽ 0 , i = 1 , ⋯ , m , h j ( x ) = 0 , j = 1 , ⋯ , q f_{\mathrm{i}}\left( x \right) \leqslant 0,i=1,\cdots ,m , h_{\mathrm{j}}\left( x \right) =0,j=1,\cdots ,q fi(x)0,i=1,,m,hj(x)=0,j=1,,q —— constrain set C = { x ∈ R n : f i ( x ) ⩽ 0 , h j ( x ) = 0 } C=\left\{ x\in \mathbb{R} ^n:f_{\mathrm{i}}\left( x \right) \leqslant 0,h_{\mathrm{j}}\left( x \right) =0 \right\} C={xRn:fi(x)0,hj(x)=0} , if x ∈ C x\in C xC , then x x x is called feasible

decison variable x ∈ R n x\in \mathbb{R} ^n xRn , domain D \mathcal{D} D, referred to as primal problem

optimal value p ∗ p^* p

is called a convex optimization problem if f 0 , . . . , f m f_0,...,f_{\mathrm{m}} f0,...,fm are convex and h 1 , . . . , h q h_1,...,h_{\mathrm{q}} h1,...,hq are affine —— means objective function f 0 f_0 f0 is convex and constrain set is convex

typically convex optimization can be solved efficiently

  • Categories :
    objective func (Linear/affine) + constrain set/func(Linear/affine) —— Linear Program LP
    objective func (Quardratic - convex) + constrain set/func(Linear/affine) —— Quardratic Program QP
    objective func (Quardratic - convex) + constrain set/func(uardratic) —— Quardratic Constrained Quardratic Program QCQP - Hard to solve
    在这里插入图片描述
  • How to find optimal solutions?
    optimality condition: for unconstrained problems : 1st-order optimality condition x ∗ x^* x is local minimizer then ∇ f ( x ∗ ) = 0 \nabla f\left( x^* \right) =0 f(x)=0 (Taylor expension)
    For convex problem , above condition guarantees x ∗ x^* x is global minimizer

Question : what about constrained optimization?

4.2 Lagrangian

Associated Lagrangian : L : D × R m × R q → R L:\mathcal{D} \times \mathbb{R} ^m\times \mathbb{R} ^q\rightarrow \mathbb{R} L:D×Rm×RqR
L ( x , λ , ν ) = f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ j = 1 q ν j h j ( x ) , λ i ⩾ 0 , ν j ⩾ 0 L\left( x,\lambda ,\nu \right) =f_0\left( x \right) +\sum_{i=1}^m{\lambda _{\mathrm{i}}f_{\mathrm{i}}\left( x \right)}+\sum_{j=1}^q{\nu _{\mathrm{j}}h_{\mathrm{j}}\left( x \right)},\lambda _{\mathrm{i}}\geqslant 0,\nu _{\mathrm{j}}\geqslant 0 L(x,λ,ν)=f0(x)+i=1mλifi(x)+j=1qνjhj(x),λi0,νj0
weighted sum of objective and constraints functions
λ i \lambda _{\mathrm{i}} λi : Lagrangian multiplier associated with f i ( x ) ⩽ 0 f_{\mathrm{i}}\left( x \right) \leqslant 0 fi(x)0
ν j \nu _{\mathrm{j}} νj : Lagrangian multiplier associated with h j ( x ) = 0 h_{\mathrm{j}}\left( x \right) =0 hj(x)=0

4.2.1 Lagrangian Dual Problems

Lagrangian Dual Problems : g : R m × R q → R g:\mathbb{R} ^m\times \mathbb{R} ^q\rightarrow \mathbb{R} g:Rm×RqR
g ( λ , ν ) = i n f x ∈ D L ( x , λ , ν ) = i n f x ∈ D { f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ j = 1 q ν j h j ( x ) } g\left( \lambda ,\nu \right) =\underset{x\in \mathcal{D}}{\mathrm{inf}}L\left( x,\lambda ,\nu \right) =\underset{x\in \mathcal{D}}{\mathrm{inf}}\left\{ f_0\left( x \right) +\sum_{i=1}^m{\lambda _{\mathrm{i}}f_{\mathrm{i}}\left( x \right)}+\sum_{j=1}^q{\nu _{\mathrm{j}}h_{\mathrm{j}}\left( x \right)} \right\} g(λ,ν)=xDinfL(x,λ,ν)=xDinf{f0(x)+i=1mλifi(x)+j=1qνjhj(x)}

  • g g g is convex(always true - regardless fo whether the primal peoblem is convex or not) , can be − ∞ -\infty for some λ , ν \lambda ,\nu λ,ν
  • Lower bound property : If λ ⪰ 0 \lambda \succeq 0 λ0 (elementwise) , then g ( λ , ν ) ⩽ p ∗ g\left( \lambda ,\nu \right) \leqslant p^* g(λ,ν)p
    Let x ~ \tilde{x} x~ be arbitrary feasible primal variable and λ ⩾ 0 \lambda \geqslant 0 λ0 , f 0 ( x ~ ) ⩾ L ( x ~ , λ , ν ) ⩾ i n f x ∈ D L ( x , λ , ν ) = g ( λ , ν ) ⇒ min ⁡ x ~ f e a s i b l e f 0 ( x ~ ) ⩾ g ( λ , ν ) f_0\left( \tilde{x} \right) \geqslant L\left( \tilde{x},\lambda ,\nu \right) \geqslant \underset{x\in \mathcal{D}}{\mathrm{inf}}L\left( x,\lambda ,\nu \right) =g\left( \lambda ,\nu \right) \Rightarrow \underset{\tilde{x}\,\,feasible}{\min}f_0\left( \tilde{x} \right) \geqslant g\left( \lambda ,\nu \right) f0(x~)L(x~,λ,ν)xDinfL(x,λ,ν)=g(λ,ν)x~feasibleminf0(x~)g(λ,ν)

Lagrangian Dual Problems :
maximize : g ( λ , ν ) g\left( \lambda ,\nu \right) g(λ,ν)
subject to : λ ⪰ 0 \lambda \succeq 0 λ0
⇔ \Leftrightarrow change convex optimization problem
min : − g ( λ , ν ) -g\left( \lambda ,\nu \right) g(λ,ν)
subject to : − λ ⪯ 0 -\lambda \preceq 0 λ0

Fined the best lower bound on p ∗ p^* p using the Lagrange dual function

Dual problem is a convex optimization problem even when the primal is nonconvex

optimal value denoted d ∗ d^* d

( λ , ν ) \left( \lambda ,\nu \right) (λ,ν) is called dual feasible if λ ⪰ 0 \lambda \succeq 0 λ0 and ( λ , ν ) ∈ d o m ( g ) \left( \lambda ,\nu \right) \in dom\left( g \right) (λ,ν)dom(g)

Often simplified by making the implicit constraint ( λ , ν ) ∈ d o m ( g ) \left( \lambda ,\nu \right) \in dom\left( g \right) (λ,ν)dom(g) explicit

例子-见 5

4.2.2 Duality Theorems

  • Weak Duality : d ∗ ⩽ p ∗ d^*\leqslant p^* dp
    always hold (for convex and nonconvex problems)
    can be used to find nontrivial lower bounds for difficult problems
  • Strong Duality : d ∗ = p ∗ d^*= p^* d=p
    not true in general, but typically holds for convex problems
    conditions that guarantee strong duality in convex problems are called constriant qualifications
    Slater’s constraint qualification : Primal is strictly feasible

4.3 General Optimality Conditions

For general optimization problem:
minimize : f 0 ( x ) f_0\left( x \right) f0(x)
subject to : f i ( x ) ⩽ 0 , i = 1 , ⋯ , m , h j ( x ) = 0 , j = 1 , ⋯ , q f_{\mathrm{i}}\left( x \right) \leqslant 0,i=1,\cdots ,m,h_{\mathrm{j}}\left( x \right) =0,j=1,\cdots ,q fi(x)0,i=1,,m,hj(x)=0,j=1,,q

General Optimality Conditions : strong duality and ( x ∗ , λ ∗ , ν ∗ ) \left( x^*,\lambda ^*,\nu ^* \right) (x,λ,ν) is primal-dual optimal ⇔ \Leftrightarrow

  • x ∗ = a r g min ⁡ x L ( x , λ ∗ , ν ∗ ) x^*=arg\min _{\mathrm{x}}L\left( x,\lambda ^*,\nu ^* \right) x=argminxL(x,λ,ν) —— Lagrange optimality
  • λ i ∗ f i ( x ) = 0 , ∀ i \lambda _{\mathrm{i}}^{*}f_{\mathrm{i}}\left( x \right) =0,\forall i λifi(x)=0,i —— Complementarity
  • f i ( x ∗ ) ⩽ 0 , h j ( x ∗ ) = 0 , ∀ i , j f_{\mathrm{i}}\left( x^* \right) \leqslant 0,h_{\mathrm{j}}\left( x^* \right) =0,\forall i,j fi(x)0,hj(x)=0,i,j —— primal feasibility
  • λ i ∗ ⩾ 0 , ∀ i \lambda _{\mathrm{i}}^{*}\geqslant 0,\forall i λi0,i —— dual feasibility

Proof Necessity
Assume x ∗ x^* x and ( λ ∗ , ν ∗ ) \left( \lambda ^*,\nu ^* \right) (λ,ν) are primal-dual optimal slns with zero duality gap

f 0 ( x ∗ ) = g ( λ ∗ , ν ∗ ) = min ⁡ x ∈ D ( f 0 ( x ) + ∑ i = 1 m λ i ∗ f i ( x ) + ∑ j = 1 q ν j ∗ h j ( x ) ) ⩽ f 0 ( x ∗ ) + ∑ i = 1 m λ i ∗ f i ( x ∗ ) + ∑ j = 1 q ν j ∗ h j ( x ∗ ) ⩽ f 0 ( x ∗ ) f_0\left( x^* \right) =g\left( \lambda ^*,\nu ^* \right) =\underset{x\in \mathcal{D}}{\min}\left( f_0\left( x \right) +\sum_{i=1}^m{\lambda _{\mathrm{i}}^{*}f_{\mathrm{i}}\left( x \right)}+\sum_{j=1}^q{\nu _{\mathrm{j}}^{*}h_{\mathrm{j}}\left( x \right)} \right) \leqslant f_0\left( x^* \right) +\sum_{i=1}^m{\lambda _{\mathrm{i}}^{*}f_{\mathrm{i}}\left( x^* \right)}+\sum_{j=1}^q{\nu _{\mathrm{j}}^{*}h_{\mathrm{j}}\left( x^* \right)}\leqslant f_0\left( x^* \right) f0(x)=g(λ,ν)=xDmin(f0(x)+i=1mλifi(x)+j=1qνjhj(x))f0(x)+i=1mλifi(x)+j=1qνjhj(x)f0(x)

Therefore, all inequalities are actually equalities

Replacing the first inequality with equality ⇒ x ∗ = a r g min ⁡ x L ( x , λ ∗ , ν ∗ ) \Rightarrow x^*=arg\min _{\mathrm{x}}L\left( x,\lambda ^*,\nu ^* \right) x=argminxL(x,λ,ν)

Replacing the second inequality with equality ⇒ \Rightarrow complementarity condition

Proof of Sufficiency
Assume ( x ∗ , λ ∗ , ν ∗ ) \left( x^*,\lambda ^*,\nu ^* \right) (x,λ,ν) satisfies the optimality conditions :
g ( λ ∗ , ν ∗ ) = f ( x ∗ ) + ∑ i = 1 m λ i ∗ f i ( x ∗ ) + ∑ j = 1 q ν j ∗ h j ( x ∗ ) = f ( x ∗ ) g\left( \lambda ^*,\nu ^* \right) =f\left( x^* \right) +\sum_{i=1}^m{\lambda _{\mathrm{i}}^{*}f_{\mathrm{i}}\left( x^* \right)}+\sum_{j=1}^q{\nu _{\mathrm{j}}^{*}h_{\mathrm{j}}\left( x^* \right)}=f\left( x^* \right) g(λ,ν)=f(x)+i=1mλifi(x)+j=1qνjhj(x)=f(x)

The first equality is by Lagrange optimality, and the 2nd equality is due to conplementarity

Therefore, the duality gap is zero, and ( x ∗ , λ ∗ , ν ∗ ) \left( x^*,\lambda ^*,\nu ^* \right) (x,λ,ν) is the primal dual optimal solution

4.4 KKT Conditions

For convex optimization problem:
minimize : f 0 ( x ) f_0\left( x \right) f0(x)
subject to : f i ( x ) ⩽ 0 , i = 1 , ⋯ , m , h j ( x ) = 0 , j = 1 , ⋯ , q f_{\mathrm{i}}\left( x \right) \leqslant 0,i=1,\cdots ,m,h_{\mathrm{j}}\left( x \right) =0,j=1,\cdots ,q fi(x)0,i=1,,m,hj(x)=0,j=1,,q

Suppose duality gap is zero , then ( x ∗ , λ ∗ , ν ∗ ) \left( x^*,\lambda ^*,\nu ^* \right) (x,λ,ν) is primal-dual optimal if and only if it satisfies the Karush-Kuhn-Tucker(KKT) conditions

  • ∂ L ∂ x ( x , λ ∗ , ν ∗ ) = 0 \frac{\partial L}{\partial x}\left( x,\lambda ^*,\nu ^* \right) =0 xL(x,λ,ν)=0 —— Stationarity
  • λ i ∗ f i ( x ∗ ) = 0 , ∀ i \lambda _{\mathrm{i}}^{*}f_{\mathrm{i}}\left( x^* \right) =0,\forall i λifi(x)=0,i —— Complementarity
  • f i ( x ∗ ) ⩽ 0 , h j ( x ∗ ) = 0 , ∀ i , j f_{\mathrm{i}}\left( x^* \right) \leqslant 0,h_{\mathrm{j}}\left( x^* \right) =0,\forall i,j fi(x)0,hj(x)=0,i,j —— primal feasibility
  • λ i ∗ ⩾ 0 , ∀ i \lambda _{\mathrm{i}}^{*}\geqslant 0,\forall i λi0,i —— dual feasibility

5. Linear Program

Primal Formulations
minimize : c T x c^{\mathrm{T}}x cTx
subject to : A x + b , x ⩾ 0 Ax+b,x\geqslant 0 Ax+b,x0

Lagrangian func : L ( x , λ , ν ) = c T x + λ T ( − x ) + ν T ( A x − b ) L\left( x,\lambda ,\nu \right) =c^{\mathrm{T}}x+\lambda ^{\mathrm{T}}\left( -x \right) +\nu ^{\mathrm{T}}\left( Ax-b \right) L(x,λ,ν)=cTx+λT(x)+νT(Axb)
⇒ g ( λ , ν ) = i n f x ∈ R n { ( c T − λ T + ν T A ) x − ν T b } = { − ∞ i f c T − λ T + ν T A ≠ 0 − b T ν i f c T − λ T + ν T A = 0 \Rightarrow g\left( \lambda ,\nu \right) =\underset{x\in \mathbb{R} ^n}{\mathrm{inf}}\left\{ \left( c^{\mathrm{T}}-\lambda ^{\mathrm{T}}+\nu ^{\mathrm{T}}A \right) x-\nu ^{\mathrm{T}}b\,\, \right\} =\begin{cases} -\infty if\,\,c^{\mathrm{T}}-\lambda ^{\mathrm{T}}+\nu ^{\mathrm{T}}A\ne 0\\ -b^{\mathrm{T}}\nu \,\, if\,\,c^{\mathrm{T}}-\lambda ^{\mathrm{T}}+\nu ^{\mathrm{T}}A=0\\ \end{cases} g(λ,ν)=xRninf{(cTλT+νTA)xνTb}={ifcTλT+νTA=0bTνifcTλT+νTA=0
⇒ max ⁡ λ , ν g ( λ , ν ) \Rightarrow \underset{\lambda ,\nu}{\max}g\left( \lambda ,\nu \right) λ,νmaxg(λ,ν) , subject to : λ ⩾ 0 , c T − λ T + ν T A = 0 \lambda \geqslant 0,c^{\mathrm{T}}-\lambda ^{\mathrm{T}}+\nu ^{\mathrm{T}}A=0 λ0,cTλT+νTA=0

Its Dual:
maximize : − b T ν -b^{\mathrm{T}}\nu bTν
subject to : A T ν + c ⩾ 0 A^{\mathrm{T}}\nu +c\geqslant 0 ATν+c0

  • n n n variables q q q equality constraint n n n inequalities ⇒ \Rightarrow q q q variables n n n inequalities constraint

6. Quadratic Program

Unconstrained Quadratic Program : Least Squares

minimize : J ( x ) = 1 2 x T Q x + q T x + q 0 J\left( x \right) =\frac{1}{2}x^{\mathrm{T}}Qx+q^{\mathrm{T}}x+q_0 J(x)=21xTQx+qTx+q0
Problem is convex iff Q ⪰ 0 Q\succeq 0 Q0
When J J J is convex , it can be wrtitten as : J ( x ) = ∥ Q 1 2 x − y ∥ 2 + c J\left( x \right) =\left\| Q^{\frac{1}{2}}x-y \right\| ^2+c J(x)= Q21xy 2+c

KKT condition

Optimal solution

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/579588.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux 中 ext2文件系统实现

ext2文件系统结构 图片的svg下载链接&#xff08;图中关于buffer的部分&#xff0c;上下两部分是重复的&#xff0c;是从不同维度下看的buffer结构&#xff09; linux内核本身不提供ext2文件系统的格式化功能&#xff0c;可以参考busybox中对mkfs.ext2的实现&#xff08;mkfs.…

sheng的学习笔记-【中】【吴恩达课后测验】Course 4 -卷积神经网络 - 第二周测验

课程4_第2周_测验题 目录 第一题 1.在典型的卷积神经网络中&#xff0c;随着网络的深度增加&#xff0c;你能看到的现象是&#xff1f; A. 【  】 n H n_H nH​和 n W n_W nW​增加&#xff0c;同时 n C n_C nC​减少 B. 【  】 n H n_H nH​和 n W n_W nW​减少&#x…

【论文笔记】Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks

论文地址&#xff1a;Run, Dont Walk: Chasing Higher FLOPS for Faster Neural Networks 代码地址&#xff1a;https://github.com/jierunchen/fasternet 该论文主要提出了PConv&#xff0c;通过优化FLOPS提出了快速推理模型FasterNet。 在设计神经网络结构的时候&#xff…

性能优化,让用户体验更加完美(渲染层面)

前言 上一篇我们已经围绕“网络层面”探索页面性能优化的方案&#xff0c;接下来本篇围绕“浏览器渲染层面”继续开展探索。正文开始前&#xff0c;我们思考如下问题&#xff1a; 浏览器渲染页面会经过哪几个关键环节&#xff1f;“渲染层面”的优化从哪几方面着手&#xff1f…

【Redis】一文掌握Redis原理及常见问题

Redis是基于内存数据库&#xff0c;操作效率高&#xff0c;提供丰富的数据结构&#xff08;Redis底层对数据结构还做了优化&#xff09;&#xff0c;可用作数据库&#xff0c;缓存&#xff0c;消息中间件等。如今广泛用于互联网大厂&#xff0c;面试必考点之一&#xff0c;本文…

.NET Conf 2023 回顾 – 庆祝社区、创新和 .NET 8 的发布

作者&#xff1a; Jon Galloway - Principal Program Manager, .NET Community Team Mehul Harry - Product Marketing Manager, .NET, Azure Marketing 排版&#xff1a;Alan Wang .NET Conf 2023 是有史以来规模最大的 .NET 会议&#xff0c;来自全球各地的演讲者进行了 100 …

设计模式-注册模式

设计模式专栏 模式介绍模式特点应用场景注册模式和单例模式的区别代码示例Java实现注册模式Python实现注册模式 注册模式在spring中的应用 模式介绍 注册模式是一种设计模式&#xff0c;也称为注册树或注册器模式。这种模式将类的实例化和创建分离开来&#xff0c;避免在应用程…

【广州华锐互动】VR科技科普展厅平台:快速、便捷地创建出属于自己的虚拟展馆

随着科技的不断进步&#xff0c;虚拟现实(VR)技术已经在许多领域取得了显著的成果。尤其是在展馆设计领域&#xff0c;VR科技科普展厅平台已经实现了许多令人瞩目的新突破。 VR科技科普展厅平台是广州华锐互动专门为企业和机构提供虚拟展馆设计和制作的在线平台。通过这个平台&…

Git基础学习_p1

文章目录 一、前言二、Git手册学习2.1 Git介绍&前置知识2.2 Git教程2.2.1 导入新项目2.2.2 做更改2.2.3 Git追踪内容而非文件2.2.4 查看项目历史2.2.5 管理分支&#x1f53a;2.2.6 用Git来协同工作2.2.7 查看历史 三、结尾 一、前言 Git相信大部分从事软件工作的人都听说过…

ASP.NET MVC的5种AuthorizationFilter

一、IAuthorizationFilter 所有的AuthorizationFilter实现了接口IAuthorizationFilter。如下面的代码片断所示&#xff0c;IAuthorizationFilter定义了一个OnAuthorization方法用于实现授权的操作。作为该方法的参数filterContext是一个表示授权上下文的AuthorizationContext对…

从计算机内存结构到iOS

一、冯.诺伊曼结构 当前计算机都是冯.诺伊曼结构&#xff08;Von Neumann architecture&#xff09;&#xff0c;是指存储器存放程序的指令以及数据&#xff0c;在程序运行时根据需要提供给CPU使用。 冯.诺伊曼瓶颈 在目前的科技水平之下&#xff0c;CPU与存储器之间的读写速…

挑战与应对:迅软科技探讨IT企业应对数据泄密危机的智慧之路

随着信息技术的快速发展&#xff0c;软件IT行业面临着前所未有的数据安全挑战。黑客攻击、病毒传播、内部泄密等安全威胁层出不穷&#xff0c;给企业的核心资产和运营带来严重威胁。同时&#xff0c;国家对于数据安全的法律法规也日益严格&#xff0c;要求企业必须采取更加有效…

https密钥认证、上传镜像实验

一、第一台主机通过https密钥对认证 1、安装docker服务 &#xff08;1&#xff09;安装环境依赖包 yum -y install yum-utils device-mapper-persistent-data lvm2 &#xff08;2&#xff09;设置阿里云镜像源 yum-config-manager --add-repo http://mirrors.aliyun.com/do…

VLAN简介

在配置交换机或者传输设备时&#xff0c;经常会提到vlan&#xff0c;这个vlan具体是啥呢&#xff1f; VLAN&#xff08;Virtual Local Area Network&#xff09;中文名为“虚拟局域网”。它是一种在物理网络上划分出逻辑网络的方法&#xff0c;将物理上的局域网在逻辑上划分为多…

设计模式——适配器模式(Adapter Pattern)

概述 适配器模式可以将一个类的接口和另一个类的接口匹配起来&#xff0c;而无须修改原来的适配者接口和抽象目标类接口。适配器模式(Adapter Pattern)&#xff1a;将一个接口转换成客户希望的另一个接口&#xff0c;使接口不兼容的那些类可以一起工作&#xff0c;其别名为包装…

分布式下有哪些好用的监控组件?

在之前的内容中&#xff0c;分析了分布式系统下的线上服务监控的常用指标&#xff0c;那么在实际开发中&#xff0c;如何收集各个监控指标呢&#xff1f;线上出现告警之后&#xff0c;又如何快速处理呢&#xff1f;本文我们就来看下这两个问题。 常用监控组件 目前分布式系统…

Node.js版本对比

目录 1. node版本与Npm版本对照表 2. node版本与node-sass版本对照表 3. node-sass与sass-loader版本对照表 1. node版本与Npm版本对照表 以往的版本 | Node.js 下面显示最新的对应内容&#xff0c;如果需要查找历史版本&#xff0c;可以进入上面的页面查询 VersionLTSDateV8np…

鸿蒙实战-库的调用(ArkTS)

整体框架搭建 主页面、本地库组件页面、社区库组件页面三个页面组成&#xff0c;主页面由Navigation作为根组件实现全局标题&#xff0c;由Tabs组件实现本地库和社区库页面的切换。 // MainPage.ets import { Outer } from ../view/OuterComponent; import { Inner } from ..…

【微服务核心】Spring Boot

Spring Boot 文章目录 Spring Boot1. 简介2. 开发步骤3. 配置文件4. 整合 Spring MVC 功能5. 整合 Druid 和 Mybatis6. 使用声明式事务7. AOP整合配置8. SpringBoot项目打包和运行 1. 简介 SpringBoot&#xff0c;开箱即用&#xff0c;设置合理的默认值&#xff0c;同时也可以…

如何让机器人具备实时、多模态的触觉感知能力?

人类能够直观地感知和理解复杂的触觉信息&#xff0c;是因为分布在指尖皮肤的皮肤感受器同时接收到不同的触觉刺激&#xff0c;并将触觉信号立即传输到大脑。尽管许多研究小组试图模仿人类皮肤的结构和功能&#xff0c;但在一个系统内实现类似人类的触觉感知过程仍然是一个挑战…