sheng的学习笔记-【中】【吴恩达课后测验】Course 4 -卷积神经网络 - 第二周测验

课程4_第2周_测验题

目录

第一题

1.在典型的卷积神经网络中,随着网络的深度增加,你能看到的现象是?

A. 【  】 n H n_H nH n W n_W nW增加,同时 n C n_C nC减少

B. 【  】 n H n_H nH n W n_W nW减少,同时 n C n_C nC也减少

C. 【  】 n H n_H nH n W n_W nW增加,同时 n C n_C nC也增加

D. 【  】 n H n_H nH n W n_W nW减少,同时 n C n_C nC增加

答案:

D.【 √ 】 n H n_H nH n W n_W nW减少,同时 n C n_C nC增加

第二题

2.在典型的卷积神经网络中,你能看到的是?

A. 【  】多个卷积层后面跟着的是一个池化层

B. 【  】多个池化层后面跟着的是一个卷积层

C. 【  】全连接层(FC)位于最后的几层

D. 【  】全连接层(FC)位于开始的几层

答案:

A.【 √ 】多个卷积层后面跟着的是一个池化层

C.【 √ 】全连接层(FC)位于最后的几层

第三题

3.为了构建一个非常深的网络,我们经常在卷积层使用“valid”的填充,只使用池化层来缩小激活值的宽/高度,否则的话就会使得输入迅速的变小。

A. 【  】对

B. 【  】不对

答案:

B.【 √ 】不对

第四题

4.训练更深层的网络(例如,在网络中添加额外的层)可以使网络适应更复杂的功能,因此几乎总是会导致更低的训练错误。对于这个问题,假设是指“普通”网络。

A. 【  】对

B. 【  】不对

答案:

B.【 √ 】不对

第五题

5.下面计算残差(ResNet)块的公式中,横线上应该分别填什么?

a [ l + 2 ] = g ( W [ l + 2 ] g ( W [ l + 1 ] + b [ l + 1 ] ) + b [ l + 2 ] + _ _ ? _ _ ) + _ _ ? _ _ ) a^{[l+2]}=g(W^{[l+2]}g(W^{[l+1]}+b^{[l+1]})+b^{[l+2]}+\_\_?\_\_)+\_\_?\_\_) a[l+2]=g(W[l+2]g(W[l+1]+b[l+1])+b[l+2]+__?__)+__?__)

A. 【  】分别是 0 0 0 z [ l + 1 ] z^{[l+1]} z[l+1]

B. 【  】分别是 a [ l ] a^{[l]} a[l] 0 0 0

C. 【  】分别是 z [ l ] z^{[l]} z[l] a [ l ] a^{[l]} a[l]

D. 【  】分别是 0 0 0 a [ l ] a^{[l]} a[l]

答案:

B.【 √ 】分别是 a [ l ] a^{[l]} a[l] 0 0 0

在这里插入图片描述

第六题

6.关于残差网络下面哪个(些)说法是正确的?

A. 【  】使用跳越连接能够对反向传播的梯度下降有益,且能够帮你对更深的网络进行训练

B. 【  】跳跃连接计算输入的复杂的非线性函数以传递到网络中的更深层

C. 【  】有L层的残差网络一共有 L 2 L^2 L2种跳跃连接的顺序

D. 【  】跳跃连接能够使得网络轻松地学习残差块类的输入输出间的身份映射

答案:

A.【 √ 】使用跳越连接能够对反向传播的梯度下降有益,且能够帮你对更深的网络进行训练

D.【 √ 】跳跃连接能够使得网络轻松地学习残差块类的输入输出间的身份映射

第七题

7.假设你的输入的维度为64x64x16,单个1x1的卷积过滤器含有多少个参数(包括偏差)?

A. 【  】2

B. 【  】17

C. 【  】4097

D. 【  】1

答案:

B.【 √ 】17

第八题

8.假设你有一个维度为 n H × n W × n C n_H×n_W×n_C nH×nW×nC的卷积输入,下面哪个说法是正确的(假设卷积层为1x1,步长为1,padding为0)?

A. 【  】你能够使用1x1的卷积层来减少 n C n_C nC,但是不能减少 n H , n W n_H,n_W nH,nW

B. 【  】你可以使用池化层减少 n H , n W n_H,n_W nH,nW,但是不能减少 n C n_C nC

C. 【  】你可以使用一个1x1的卷积层来减少 n H , n W n_H,n_W nH,nW n C n_C nC

D. 【  】你可以使用池化层减少 n H , n W n_H,n_W nH,nW n C n_C nC

答案:

A.【 √ 】你能够使用1x1的卷积层来减少 n C n_C nC,但是不能减少 n H , n W n_H,n_W nH,nW

B.【 √ 】你可以使用池化层减少 n H , n W n_H,n_W nH,nW,但是不能减少 n C n_C nC

第九题

9.关于 Inception 网络下面哪些说法是正确的

A. 【  】Inception 网络包含了各种网络的体系结构(类似于随机删除节点模式,它会在每一步中随机选择网络的结构),因此它具有随机删除节点的正则化效应。

B. 【  】Inception 块通常使用1x1的卷积来减少输入卷积的大小,然后再使用3x3和5x5的卷积。

C. 【  】一个inception 块允许网络使用1x1, 3x3, 5x5 的和卷积个池化层的组合。

D. 【  】通过叠加inception块的方式让inception网络更深,不会损害训练集的表现。

答案:

B.【 √ 】Inception 块通常使用1x1的卷积来减少输入卷积的大小,然后再使用3x3和5x5的卷积。

C.【 √ 】一个inception 块允许网络使用1x1, 3x3, 5x5 的和卷积个池化层的组合。

第十题

10.下面哪些是使用卷积网络的开源实现(包含模型/权值)的常见原因?

A. 【  】为一个计算机视觉任务训练的模型通常可以用来数据扩充,即使对于不同的计算机视觉任务也是如此。

B. 【  】为一个计算机视觉任务训练的参数通常对其他计算机视觉任务的预训练是有用的。

C. 【  】使用获得计算机视觉竞赛奖项的相同的技术,广泛应用于实际部署。

D. 【  】使用开源实现可以很简单的来实现复杂的卷积结构。

答案:

B.【 √ 】为一个计算机视觉任务训练的参数通常对其他计算机视觉任务的预训练是有用的。

D.【 √ 】使用开源实现可以很简单的来实现复杂的卷积结构。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/579584.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【论文笔记】Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks

论文地址:Run, Dont Walk: Chasing Higher FLOPS for Faster Neural Networks 代码地址:https://github.com/jierunchen/fasternet 该论文主要提出了PConv,通过优化FLOPS提出了快速推理模型FasterNet。 在设计神经网络结构的时候&#xff…

性能优化,让用户体验更加完美(渲染层面)

前言 上一篇我们已经围绕“网络层面”探索页面性能优化的方案,接下来本篇围绕“浏览器渲染层面”继续开展探索。正文开始前,我们思考如下问题: 浏览器渲染页面会经过哪几个关键环节?“渲染层面”的优化从哪几方面着手&#xff1f…

【Redis】一文掌握Redis原理及常见问题

Redis是基于内存数据库,操作效率高,提供丰富的数据结构(Redis底层对数据结构还做了优化),可用作数据库,缓存,消息中间件等。如今广泛用于互联网大厂,面试必考点之一,本文…

.NET Conf 2023 回顾 – 庆祝社区、创新和 .NET 8 的发布

作者: Jon Galloway - Principal Program Manager, .NET Community Team Mehul Harry - Product Marketing Manager, .NET, Azure Marketing 排版:Alan Wang .NET Conf 2023 是有史以来规模最大的 .NET 会议,来自全球各地的演讲者进行了 100 …

设计模式-注册模式

设计模式专栏 模式介绍模式特点应用场景注册模式和单例模式的区别代码示例Java实现注册模式Python实现注册模式 注册模式在spring中的应用 模式介绍 注册模式是一种设计模式,也称为注册树或注册器模式。这种模式将类的实例化和创建分离开来,避免在应用程…

【广州华锐互动】VR科技科普展厅平台:快速、便捷地创建出属于自己的虚拟展馆

随着科技的不断进步,虚拟现实(VR)技术已经在许多领域取得了显著的成果。尤其是在展馆设计领域,VR科技科普展厅平台已经实现了许多令人瞩目的新突破。 VR科技科普展厅平台是广州华锐互动专门为企业和机构提供虚拟展馆设计和制作的在线平台。通过这个平台&…

Git基础学习_p1

文章目录 一、前言二、Git手册学习2.1 Git介绍&前置知识2.2 Git教程2.2.1 导入新项目2.2.2 做更改2.2.3 Git追踪内容而非文件2.2.4 查看项目历史2.2.5 管理分支🔺2.2.6 用Git来协同工作2.2.7 查看历史 三、结尾 一、前言 Git相信大部分从事软件工作的人都听说过…

ASP.NET MVC的5种AuthorizationFilter

一、IAuthorizationFilter 所有的AuthorizationFilter实现了接口IAuthorizationFilter。如下面的代码片断所示,IAuthorizationFilter定义了一个OnAuthorization方法用于实现授权的操作。作为该方法的参数filterContext是一个表示授权上下文的AuthorizationContext对…

从计算机内存结构到iOS

一、冯.诺伊曼结构 当前计算机都是冯.诺伊曼结构(Von Neumann architecture),是指存储器存放程序的指令以及数据,在程序运行时根据需要提供给CPU使用。 冯.诺伊曼瓶颈 在目前的科技水平之下,CPU与存储器之间的读写速…

挑战与应对:迅软科技探讨IT企业应对数据泄密危机的智慧之路

随着信息技术的快速发展,软件IT行业面临着前所未有的数据安全挑战。黑客攻击、病毒传播、内部泄密等安全威胁层出不穷,给企业的核心资产和运营带来严重威胁。同时,国家对于数据安全的法律法规也日益严格,要求企业必须采取更加有效…

https密钥认证、上传镜像实验

一、第一台主机通过https密钥对认证 1、安装docker服务 (1)安装环境依赖包 yum -y install yum-utils device-mapper-persistent-data lvm2 (2)设置阿里云镜像源 yum-config-manager --add-repo http://mirrors.aliyun.com/do…

VLAN简介

在配置交换机或者传输设备时,经常会提到vlan,这个vlan具体是啥呢? VLAN(Virtual Local Area Network)中文名为“虚拟局域网”。它是一种在物理网络上划分出逻辑网络的方法,将物理上的局域网在逻辑上划分为多…

设计模式——适配器模式(Adapter Pattern)

概述 适配器模式可以将一个类的接口和另一个类的接口匹配起来,而无须修改原来的适配者接口和抽象目标类接口。适配器模式(Adapter Pattern):将一个接口转换成客户希望的另一个接口,使接口不兼容的那些类可以一起工作,其别名为包装…

分布式下有哪些好用的监控组件?

在之前的内容中,分析了分布式系统下的线上服务监控的常用指标,那么在实际开发中,如何收集各个监控指标呢?线上出现告警之后,又如何快速处理呢?本文我们就来看下这两个问题。 常用监控组件 目前分布式系统…

Node.js版本对比

目录 1. node版本与Npm版本对照表 2. node版本与node-sass版本对照表 3. node-sass与sass-loader版本对照表 1. node版本与Npm版本对照表 以往的版本 | Node.js 下面显示最新的对应内容,如果需要查找历史版本,可以进入上面的页面查询 VersionLTSDateV8np…

鸿蒙实战-库的调用(ArkTS)

整体框架搭建 主页面、本地库组件页面、社区库组件页面三个页面组成,主页面由Navigation作为根组件实现全局标题,由Tabs组件实现本地库和社区库页面的切换。 // MainPage.ets import { Outer } from ../view/OuterComponent; import { Inner } from ..…

【微服务核心】Spring Boot

Spring Boot 文章目录 Spring Boot1. 简介2. 开发步骤3. 配置文件4. 整合 Spring MVC 功能5. 整合 Druid 和 Mybatis6. 使用声明式事务7. AOP整合配置8. SpringBoot项目打包和运行 1. 简介 SpringBoot,开箱即用,设置合理的默认值,同时也可以…

如何让机器人具备实时、多模态的触觉感知能力?

人类能够直观地感知和理解复杂的触觉信息,是因为分布在指尖皮肤的皮肤感受器同时接收到不同的触觉刺激,并将触觉信号立即传输到大脑。尽管许多研究小组试图模仿人类皮肤的结构和功能,但在一个系统内实现类似人类的触觉感知过程仍然是一个挑战…

【go语言】CSP并发机制与Actor模型

一、多线程共享内存 1. 概念 多线程共享内存模型是一种并发编程模型,其中多个线程在同一个进程的地址空间中共享相同的内存区域。这种模型允许多个线程并发地读取和写入相同的数据结构,但也引入了一些潜在的问题,其中最常见的问题之一就是…

【WordPress插件】热门关键词推荐v1.3.0 Pro开心版

介绍: WordPress插件-WBOLT热门关键词推荐插件(Smart Keywords Tool)是一款集即时关键词推荐、关键词选词工具及文章智能标签功能于一体的WordPress网站SEO优化插件。 智能推荐: 热门关键词推荐引擎-支持360搜索、Bing、谷歌&a…