Azure Machine Learning - Azure OpenAI GPT 3.5 Turbo 微调教程

本教程将引导你在Azure平台完成对 gpt-35-turbo-0613 模型的微调。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人

file

教程介绍

本教程介绍如何执行下列操作:

  • 创建示例微调数据集。
  • 为资源终结点和 API 密钥创建环境变量。
  • 准备样本训练和验证数据集以进行微调。
  • 上传训练文件和验证文件进行微调。
  • gpt-35-turbo-0613 创建微调作业。
  • 部署自定义微调模型。

环境准备

  • Azure 订阅 - 免费创建订阅。

  • 已在所需的 Azure 订阅中授予对 Azure OpenAI 的访问权限 目前,仅应用程序授予对此服务的访问权限。 可以通过在 https://aka.ms/oai/access 上填写表单来申请对 Azure OpenAI 的访问权限。

  • Python 3.7.1 或更高版本

  • 以下 Python 库:jsonrequestsostiktokentimeopenai

  • OpenAI Python 库应至少为版本 1.0

  • Jupyter Notebook

  • [可进行 gpt-35-turbo-0613 微调的区域]中的 Azure OpenAI 资源。

  • 微调访问需要认知服务 OpenAI 参与者

设置

Python 库

  • OpenAI Python 1.x
pip install openai json requests os tiktoken time

检索密钥和终结点

若要成功对 Azure OpenAI 发出调用,需要一个终结点和一个密钥。

变量名称
ENDPOINT从 Azure 门户检查资源时,可在“密钥和终结点”部分中找到此值。 或者,可以在“Azure OpenAI Studio”>“操场”>“代码视图”中找到该值。 示例终结点为:https://docs-test-001.openai.azure.com/
API-KEY从 Azure 门户检查资源时,可在“密钥和终结点”部分中找到此值。 可以使用 KEY1KEY2

在 Azure 门户中转到你的资源。 可以在“资源管理”部分找到“终结点和密钥”。 复制终结点和访问密钥,因为在对 API 调用进行身份验证时需要这两项。 可以使用 KEY1KEY2。 始终准备好两个密钥可以安全地轮换和重新生成密钥,而不会导致服务中断。
file

环境变量

  • 命令行
setx AZURE_OPENAI_API_KEY "REPLACE_WITH_YOUR_KEY_VALUE_HERE" 
setx AZURE_OPENAI_ENDPOINT "REPLACE_WITH_YOUR_ENDPOINT_HERE" 
  • PowerShell
[System.Environment]::SetEnvironmentVariable('AZURE_OPENAI_API_KEY', 'REPLACE_WITH_YOUR_KEY_VALUE_HERE', 'User')
[System.Environment]::SetEnvironmentVariable('AZURE_OPENAI_ENDPOINT', 'REPLACE_WITH_YOUR_ENDPOINT_HERE', 'User')
  • Bash
echo export AZURE_OPENAI_API_KEY="REPLACE_WITH_YOUR_KEY_VALUE_HERE" >> /etc/environment
echo export AZURE_OPENAI_ENDPOINT="REPLACE_WITH_YOUR_ENDPOINT_HERE" >> /etc/environmentsource /etc/environment

创建示例数据集

微调 gpt-35-turbo-0613 需要特殊格式的 JSONL 训练文件。 OpenAI 在其文档中提供了以下示例:

{"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the capital of France?"}, {"role": "assistant", "content": "Paris, as if everyone doesn't know that already."}]}
{"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who wrote 'Romeo and Juliet'?"}, {"role": "assistant", "content": "Oh, just some guy named William Shakespeare. Ever heard of him?"}]}
{"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "How far is the Moon from Earth?"}, {"role": "assistant", "content": "Around 384,400 kilometers. Give or take a few, like that really matters."}]}

对于本示例,我们将稍作修改,将其更改为:

{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the capital of France?"}, {"role": "assistant", "content": "Paris, as if everyone doesn't know that already."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who wrote 'Romeo and Juliet'?"}, {"role": "assistant", "content": "Oh, just some guy named William Shakespeare. Ever heard of him?"}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "How far is the Moon from Earth?"}, {"role": "assistant", "content": "Around 384,400 kilometers. Give or take a few, like that really matters."}]}

尽管这三个示例有助于提供常规格式,但如果你想引导自定义微调模型以类似的方式进行响应,则需要更多示例。 一般来说,你需要至少 50 个高质量示例来开始。然而,你完全有可能有一个用例,它可能需要 1,000 个高质量的训练示例才能成功。

通常,将数据集大小加倍会促使模型质量呈线性增长。 但请记住,低质量的示例可能会对性能产生负面影响。 如果你根据大量内部数据来训练模型,而不是先修剪数据集以便获得最高质量的示例,则最终可能会得到一个性能比预期差得多的模型。

需要创建两个文件:training_set.jsonlvalidation_set.jsonl

在运行 Jupyter Notebook 的同一目录中创建文件,并将以下代码块的内容复制到相应的文件中:

training_set.jsonl

{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who discovered Antarctica?"}, {"role": "assistant", "content": "Some chaps named Fabian Gottlieb von Bellingshausen and Mikhail Lazarev, as if they don't teach that in every school!"}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What is the biggest ocean?"}, {"role": "assistant", "content": "The Pacific Ocean. It's not like it's a small pond or anything."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What is the largest planet?"}, {"role": "assistant", "content": "It's called Jupiter, you may have heard of it...or not."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who painted the Mona Lisa?"}, {"role": "assistant", "content": "Oh, some obscure artist named Leonardo da Vinci. Not that he is famous or anything."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the boiling point of water?"}, {"role": "assistant", "content": "Exciting fact of the day: it's 100 degrees Celsius. Life-changing, isn't it?"}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who wrote 'The Odyssey'?"}, {"role": "assistant", "content": "Oh, just some poet named Homer. Nothing special, really."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What is the largest mammal?"}, {"role": "assistant", "content": "Blue Whale. Quite a big fish isn't it? Oh wait, it's not a fish!"}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the highest mountain peak?"}, {"role": "assistant", "content": "Everest. Brace yourself, it's not a walk in the park."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who invented the telephone?"}, {"role": "assistant", "content": "A guy named Alexander Graham Bell. Bet you didn't guess that one!"}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What is the distance from Earth to the Sun?"}, {"role": "assistant", "content": "About 93 million miles. Just a quick drive, really."}]}

validation_set.jsonl

{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the capital of Australia?"}, {"role": "assistant", "content": "It's Canberra, not Sydney. Shocking, I know!"}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who wrote 'The Great Gatsby'?"}, {"role": "assistant", "content": "Some guy named F. Scott Fitzgerald. Ever heard of him?"}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the deepest part of the ocean?"}, {"role": "assistant", "content": "Mariana Trench, makes your swimming pool seem a bit shallow, doesn't it?"}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who composed the 'Moonlight Sonata'?"}, {"role": "assistant", "content": "Just a little-known guy named Beethoven. No big deal."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What are the colors of the rainbow?"}, {"role": "assistant", "content": "ROYGBIV. Red, orange, yellow, green, blue, indigo, violet. Not that we learned this in preschool or anything!"}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What is the smallest planet?"}, {"role": "assistant", "content": "Meet Mercury, the runt of the solar system family."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who wrote 'Pride and Prejudice'?"}, {"role": "assistant", "content": "Do the words Jane Austen ring a bell? No? Well, she wrote it."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the largest desert?"}, {"role": "assistant", "content": "Antarctica. Surprise, surprise! Deserts aren't just full of sand, you know."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What is the longest river?"}, {"role": "assistant", "content": "The Nile River. It's not like it's famous or anything."}]}
{"messages": [{"role": "system", "content": "Clippy is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What's the capital of Germany?"}, {"role": "assistant", "content": "Berlin. Shocking news, right?"}]}

现在,你需要对训练和验证文件运行一些初步检查。

import json# Load the training set
with open('training_set.jsonl', 'r', encoding='utf-8') as f:training_dataset = [json.loads(line) for line in f]# Training dataset stats
print("Number of examples in training set:", len(training_dataset))
print("First example in training set:")
for message in training_dataset[0]["messages"]:print(message)# Load the validation set
with open('validation_set.jsonl', 'r', encoding='utf-8') as f:validation_dataset = [json.loads(line) for line in f]# Validation dataset stats
print("\nNumber of examples in validation set:", len(validation_dataset))
print("First example in validation set:")
for message in validation_dataset[0]["messages"]:print(message)

输出:

Number of examples in training set: 10
First example in training set:
{'role': 'system', 'content': 'Clippy is a factual chatbot that is also sarcastic.'}
{'role': 'user', 'content': 'Who discovered America?'}
{'role': 'assistant', 'content': "Some chap named Christopher Columbus, as if they don't teach that in every school!"}Number of examples in validation set: 10
First example in validation set:
{'role': 'system', 'content': 'Clippy is a factual chatbot that is also sarcastic.'}
{'role': 'user', 'content': "What's the capital of Australia?"}
{'role': 'assistant', 'content': "It's Canberra, not Sydney. Shocking, I know!"}

在本例中,我们只有 10 个训练示例和 10 个验证示例,因此虽然这将演示微调模型的基本机制,但示例数量不太可能足以产生持续明显的影响。

现在,可以使用 tiktoken 库从 OpenAI 运行一些额外的代码来验证令牌计数。 各个示例需要保持在 gpt-35-turbo-0613 模型的 4096 个令牌的输入令牌限制内。

import json
import tiktoken
import numpy as np
from collections import defaultdictencoding = tiktoken.get_encoding("cl100k_base") # default encoding used by gpt-4, turbo, and text-embedding-ada-002 modelsdef num_tokens_from_messages(messages, tokens_per_message=3, tokens_per_name=1):num_tokens = 0for message in messages:num_tokens += tokens_per_messagefor key, value in message.items():num_tokens += len(encoding.encode(value))if key == "name":num_tokens += tokens_per_namenum_tokens += 3return num_tokensdef num_assistant_tokens_from_messages(messages):num_tokens = 0for message in messages:if message["role"] == "assistant":num_tokens += len(encoding.encode(message["content"]))return num_tokensdef print_distribution(values, name):print(f"\n#### Distribution of {name}:")print(f"min / max: {min(values)}, {max(values)}")print(f"mean / median: {np.mean(values)}, {np.median(values)}")print(f"p5 / p95: {np.quantile(values, 0.1)}, {np.quantile(values, 0.9)}")files = ['training_set.jsonl', 'validation_set.jsonl']for file in files:print(f"Processing file: {file}")with open(file, 'r', encoding='utf-8') as f:dataset = [json.loads(line) for line in f]total_tokens = []assistant_tokens = []for ex in dataset:messages = ex.get("messages", {})total_tokens.append(num_tokens_from_messages(messages))assistant_tokens.append(num_assistant_tokens_from_messages(messages))print_distribution(total_tokens, "total tokens")print_distribution(assistant_tokens, "assistant tokens")print('*' * 50)

输出:

Processing file: training_set.jsonl#### Distribution of total tokens:
min / max: 47, 57
mean / median: 50.8, 50.0
p5 / p95: 47.9, 55.2#### Distribution of assistant tokens:
min / max: 13, 21
mean / median: 16.3, 15.5
p5 / p95: 13.0, 20.1
**************************************************
Processing file: validation_set.jsonl#### Distribution of total tokens:
min / max: 43, 65
mean / median: 51.4, 49.0
p5 / p95: 45.7, 56.9#### Distribution of assistant tokens:
min / max: 8, 29
mean / median: 15.9, 13.5
p5 / p95: 11.6, 20.9
**************************************************

上传微调文件

  • OpenAI Python 1.x
# Upload fine-tuning filesimport os
from openai import AzureOpenAIclient = AzureOpenAI(azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"), api_key=os.getenv("AZURE_OPENAI_KEY"),  api_version="2023-12-01-preview"  # This API version or later is required to access fine-tuning for turbo/babbage-002/davinci-002
)training_file_name = 'training_set.jsonl'
validation_file_name = 'validation_set.jsonl'# Upload the training and validation dataset files to Azure OpenAI with the SDK.training_response = client.files.create(file=open(training_file_name, "rb"), purpose="fine-tune"
)
training_file_id = training_response.idvalidation_response = client.files.create(file=open(validation_file_name, "rb"), purpose="fine-tune"
)
validation_file_id = validation_response.idprint("Training file ID:", training_file_id)
print("Validation file ID:", validation_file_id)

输出:

Training file ID: file-9ace76cb11f54fdd8358af27abf4a3ea
Validation file ID: file-70a3f525ed774e78a77994d7a1698c4b

开始微调

现在微调文件已成功上传,可以提交微调训练作业:

  • OpenAI Python 1.x
response = client.fine_tuning.jobs.create(training_file=training_file_id,validation_file=validation_file_id,model="gpt-35-turbo-0613", # Enter base model name. Note that in Azure OpenAI the model name contains dashes and cannot contain dot/period characters. 
)job_id = response.id# You can use the job ID to monitor the status of the fine-tuning job.
# The fine-tuning job will take some time to start and complete.print("Job ID:", response.id)
print("Status:", response.id)
print(response.model_dump_json(indent=2))

输出:

Job ID: ftjob-40e78bc022034229a6e3a222c927651c
Status: pending
{"hyperparameters": {"n_epochs": 2},"status": "pending","model": "gpt-35-turbo-0613","training_file": "file-90ac5d43102f4d42a3477fd30053c758","validation_file": "file-e21aad7dddbc4ddc98ba35c790a016e5","id": "ftjob-40e78bc022034229a6e3a222c927651c","created_at": 1697156464,"updated_at": 1697156464,"object": "fine_tuning.job"
}

跟踪训练作业状态

如果想轮询训练作业状态,直至其完成,可以运行:

  • OpenAI Python 1.x
# Track training statusfrom IPython.display import clear_output
import timestart_time = time.time()# Get the status of our fine-tuning job.
response = client.fine_tuning.jobs.retrieve(job_id)status = response.status# If the job isn't done yet, poll it every 10 seconds.
while status not in ["succeeded", "failed"]:time.sleep(10)response = client.fine_tuning.jobs.retrieve(job_id)print(response.model_dump_json(indent=2))print("Elapsed time: {} minutes {} seconds".format(int((time.time() - start_time) // 60), int((time.time() - start_time) % 60)))status = response.statusprint(f'Status: {status}')clear_output(wait=True)print(f'Fine-tuning job {job_id} finished with status: {status}')# List all fine-tuning jobs for this resource.
print('Checking other fine-tune jobs for this resource.')
response = client.fine_tuning.jobs.list()
print(f'Found {len(response.data)} fine-tune jobs.')

输出:

{"hyperparameters": {"n_epochs": 2},"status": "running","model": "gpt-35-turbo-0613","training_file": "file-9ace76cb11f54fdd8358af27abf4a3ea","validation_file": "file-70a3f525ed774e78a77994d7a1698c4b","id": "ftjob-0f4191f0c59a4256b7a797a3d9eed219","created_at": 1695307968,"updated_at": 1695310376,"object": "fine_tuning.job"
}
Elapsed time: 40 minutes 45 seconds
Status: running

需要一个多小时才能完成训练的情况并不罕见。 训练完成后,输出消息将更改为:

Fine-tuning job ftjob-b044a9d3cf9c4228b5d393567f693b83 finished with status: succeeded
Checking other fine-tuning jobs for this resource.
Found 2 fine-tune jobs.

若要获取完整结果,请运行以下命令:

  • OpenAI Python 1.x
#Retrieve fine_tuned_model nameresponse = client.fine_tuning.jobs.retrieve(job_id)print(response.model_dump_json(indent=2))
fine_tuned_model = response.fine_tuned_model

部署微调的模型

与本教程中前面的 Python SDK 命令不同,引入配额功能后,模型部署必须使用 [REST API]完成,这需要单独的授权、不同的 API 路径和不同的 API 版本。

或者,可以使用任何其他常见部署方法(例如 Azure OpenAI Studio 或 [Azure CLI])来部署微调模型。

variable定义
token可通过多种方式生成授权令牌。 初始测试的最简单方法是从 Azure 门户启动 Cloud Shell。 然后运行 az account get-access-token。 可以将此令牌用作 API 测试的临时授权令牌。 建议将其存储在新的环境变量中
订阅关联的 Azure OpenAI 资源的订阅 ID
resource_groupAzure OpenAI 资源的资源组名称
resource_nameAzure OpenAI 资源名称
model_deployment_name新微调模型部署的自定义名称。 这是在进行聊天补全调用时将在代码中引用的名称。
fine_tuned_model请从上一步的微调作业结果中检索此值。 该字符串类似于 gpt-35-turbo-0613.ft-b044a9d3cf9c4228b5d393567f693b83。 需要将该值添加到 deploy_data json。
import json
import requeststoken= os.getenv("TEMP_AUTH_TOKEN") 
subscription = "<YOUR_SUBSCRIPTION_ID>"  
resource_group = "<YOUR_RESOURCE_GROUP_NAME>"
resource_name = "<YOUR_AZURE_OPENAI_RESOURCE_NAME>"
model_deployment_name ="YOUR_CUSTOM_MODEL_DEPLOYMENT_NAME"deploy_params = {'api-version': "2023-05-01"} 
deploy_headers = {'Authorization': 'Bearer {}'.format(token), 'Content-Type': 'application/json'}deploy_data = {"sku": {"name": "standard", "capacity": 1}, "properties": {"model": {"format": "OpenAI","name": "<YOUR_FINE_TUNED_MODEL>", #retrieve this value from the previous call, it will look like gpt-35-turbo-0613.ft-b044a9d3cf9c4228b5d393567f693b83"version": "1"}}
}
deploy_data = json.dumps(deploy_data)request_url = f'https://management.azure.com/subscriptions/{subscription}/resourceGroups/{resource_group}/providers/Microsoft.CognitiveServices/accounts/{resource_name}/deployments/{model_deployment_name}'print('Creating a new deployment...')r = requests.put(request_url, params=deploy_params, headers=deploy_headers, data=deploy_data)print(r)
print(r.reason)
print(r.json())

可以在 Azure OpenAI Studio 中检查部署进度:
file
在处理部署微调模型时,此过程需要一些时间才能完成的情况并不罕见。

使用已部署的自定义模型

部署微调后的模型后,可以使用该模型,就像使用 Azure OpenAI Studio 的聊天平台中的任何其他已部署模型一样,或通过聊天完成 API 中来使用它。 例如,可以向已部署的模型发送聊天完成调用,如以下 Python 示例中所示。 可以继续对自定义模型使用相同的参数,例如温度和 max_tokens,就像对其他已部署的模型一样。

  • OpenAI Python 1.x
import os
from openai import AzureOpenAIclient = AzureOpenAI(azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"), api_key=os.getenv("AZURE_OPENAI_KEY"),  api_version="2023-05-15"
)response = client.chat.completions.create(model="gpt-35-turbo-ft", # model = "Custom deployment name you chose for your fine-tuning model"messages=[{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Does Azure OpenAI support customer managed keys?"},{"role": "assistant", "content": "Yes, customer managed keys are supported by Azure OpenAI."},{"role": "user", "content": "Do other Azure AI services support this too?"}]
)print(response.choices[0].message.content)

删除部署

与其他类型的 Azure OpenAI 模型不同,微调/自定义模型在部署后会产生关联的每小时托管费用。 强烈建议你在完成本教程并针对微调后的模型测试了一些聊天完成调用后,删除模型部署

删除部署不会对模型本身产生任何影响,因此你可以随时重新部署为本教程训练的微调模型。

可以通过 [REST API]、[Azure CLI]或其他支持的部署方法删除 Azure OpenAI Studio 中的部署。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/578655.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Javacv-利用Netty实现推流直播复用(flv)

前言 上一篇文章《JavaCV之rtmp推流&#xff08;FLV和M3U8&#xff09;》介绍了javacv的基本使用&#xff0c;今天来讲讲如何实现推流复用。 以监控摄像头的直播为例&#xff0c;通常分为三步&#xff1a; 从设备获取音视频流利用javacv进行解码&#xff08;例如flv或m3u8&am…

如何实现准时的setTimeout

背景 setTimeout 是不准的。因为 setTimeout 是一个宏任务&#xff0c;它的指定时间指的是&#xff1a;进入主线程的时间。 setTimeout(callback, 进入主线程的时间)所以什么时候可以执行 callback&#xff0c;需要看 主线程前面还有多少任务待执行。 由此&#xff0c;才有了…

MySQL8安装教程

MySQL安装教程 安装环境 Windows 10 软件下载 1、官网下载 官网可以下载最新版本的MySQL 8.0 下载地址&#xff1a; https://dev.mysql.com/downloads/windows/installer/8.0.html 开始安装 1、下载完成后&#xff0c;我们就开始安装&#xff0c;双击安装包&#xff0c…

李宏毅机器学习2023|图像生成模型

文章目录 图像生成Autoregressive&#xff08;各个击破&#xff09;Non-Autoregressive&#xff08;一次到位&#xff09;一次到位法额外的输入——从一个高维的Normal Distribution作simple得到一个向量常用的图片生成模型VAEFlow-based Generative ModelDiffusion ModelGAN D…

跨境电商独立站的6大模式,任你选择!

在几年前搭建跨境电商独立站和第三方平台基本上是同步发展起来的&#xff0c;但在后期的发展过程中&#xff0c;独立站经过不同时期的革新&#xff0c;形成了自己的模式。 当你准备好创建独立站的时候&#xff0c;首先你需要了解的就是独立站运营的模式类型&#xff0c;并找到最…

熟悉DHCP面临的安全威胁与防护机制

一个网络如果要正常地运行&#xff0c;则网络中的主机&#xff08;Host&#xff09;必需要知道某些重要的网络参数&#xff0c;如IP地址、网络掩码、网关地址、DNS服务器地址、网络打印机地址等等。显然&#xff0c;在每台主机上都采用手工方式来配置这些参数是非常困难的、或是…

C/S医院检验LIS系统源码

一、检验科LIS系统概述&#xff1a; LIS系统即实验室信息管理系统。LIS系统能实现临床检验信息化&#xff0c;检验科信息管理自动化。其主要功能是将检验科的实验仪器传出的检验数据经数据分析后&#xff0c;自动生成打印报告&#xff0c;通过网络存储在数据库中&#xff…

什么是数据资产化?数据怎样成为资产?怎样进入资产负债表?

财政部发布的《企业数据资源相关会计处理暂行规定》将从2024年1月1日起开始实施&#xff0c;为企业数据资源入表提供了基本指引&#xff0c;数据资产化有望迎来爆发期。什么是数据资产化&#xff0c;怎样让数据成为资产&#xff0c;成为了众多国有企业、上市公司关心的问题。 —…

JavaScript 中的双等号(==)和三等号(===)有何不同?何时使用它们?

​&#x1f308;个人主页&#xff1a;前端青山 &#x1f525;系列专栏&#xff1a;JavaScript篇 &#x1f516;人终将被年少不可得之物困其一生 依旧青山,本期给大家带来JavaScript篇专栏内容:JavaScript-等号区别 目录 和 区别&#xff0c;分别在什么情况使用 一、等于操作符…

交换机端口镜像技术原理与配置

在网络维护的过程中会遇到需要对报文进行获取和分析的情况&#xff0c;比如怀疑有攻击报文&#xff0c;此时需要在不影响报文转发的情况下&#xff0c;对报文进行获取和分析。镜像技术可以在不影响报文正常处理流程的情况下&#xff0c;将镜像端口的报文复制一份到观察端口&…

掌握ElasticSearch(一):Elasticsearch安装与配置、Kibana安装

文章目录 〇、简介1.Elasticsearch简介2.典型业务场景3.数据采集工具4.名词解释 一、安装1.使用docker(1)创建虚拟网络(2)Elasticsearch安装步骤 2.使用压缩包 二、配置1.目录介绍2.配置文件介绍3.elasticsearch.yml节点配置4.jvm.options堆配置 二、可视化工具Kibana1.介绍2.安…

AI数字人互动大屏采用什么技术?

互动大屏&#xff08;技术支持&#xff1a;zhibo175&#xff09;本身具有令人瞩目的效果&#xff0c;再配置丰富多彩的多媒体&#xff0c;如引人注目的广告、特效或游戏等&#xff0c;可起到很好的引流作用。在空间开阔且客流密集的场所&#xff0c;使用各种形态的大面积屏幕&a…

轻量级开源服务器Tomcat本地部署并将网页发布到公网远程访问

目录 1.前言 2.本地Tomcat网页搭建 2.1 Tomcat安装 2.2 配置环境变量 2.3 环境配置 2.4 Tomcat运行测试 2.5 Cpolar安装和注册 3.本地网页发布 3.1.Cpolar云端设置 3.2 Cpolar本地设置 4.公网访问测试 5.结语 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通…

小型洗衣机哪个牌子质量好?口碑最好的四款小型洗衣机推荐

随着科技的快速发展&#xff0c;现在的人们越来越注重自己的卫生问题&#xff0c;不仅在吃上面会注重卫生问题&#xff0c;在用的上面也会更加严格要求&#xff0c;而衣服做为我们最贴身的东西&#xff0c;我们对它的要求也会更加高&#xff0c;所以最近这几年较火爆的无疑是内…

微信服务号变成订阅号全流程攻略

服务号和订阅号有什么区别&#xff1f;服务号转为订阅号有哪些作用&#xff1f;我们都知道&#xff0c;服务号一个月只能发4次文章&#xff0c;但是订阅号每天都能发文章。不过在接收消息这一方面&#xff0c;服务号群发的消息有消息提醒&#xff0c;并显示在对话框&#xff1b…

FC忍者神龟格斗可视化hack源码

[FC][忍者神龟格斗][最佳可视化][Final] 时间:2023.12.22 作者:FlameCyclone 内容: 1.可视化功能菜单 (1)菜单按键操作 1.上下键: 移动选项 2.左右键: 翻页 3.选择键: 翻转功能开关 4.开始键: 退出菜单 5.B键: 启用功能 …

143.【Nginx-02】

Nginx-02 (五)、Nginx负载均衡1.负载均衡概述2.负载均衡的原理及处理流程(1).负载均衡的作用 3.负载均衡常用的处理方式(1).用户手动选择(2).DNS轮询方式(3).四/七层负载均衡(4).Nginx七层负载均衡指令 ⭐(5).Nginx七层负载均衡的实现流程 ⭐ 4.负载均衡状态(1).down (停用)(2)…

小学班委有哪些职位

在成长的道路上&#xff0c;班委是一个不可或缺的角色。它不仅是一个职位&#xff0c;更是一份责任和担当。对于孩子们来说&#xff0c;成为班委不仅意味着荣誉&#xff0c;更意味着在集体中发挥自己的力量&#xff0c;为班级做贡献。 那么&#xff0c;小学班委有哪些职位呢&am…