Python - 深夜数据结构与算法之 Divide Conquer Backtrack

目录

一.引言

二.分治与回溯简介

1.Divide & Conquer 分治

2.BackTrack 回溯

三.经典算法实战

1.Combination-Of-Phone [17]

2.Permutations [46]

3.Permutations-2 [47]

4.Pow-X [50]

5.N-Queen [51]

6.Combinations [78]

7.Sub-Sets [78]

8.Majority-Element [169]

四.总结


一.引言

分治与回溯本质上也是递归的一种,其相对传统递归稍微复杂一些,涉及到最后一步状态的恢复,下面我们学习下二者的特性与题目。

二.分治与回溯简介

1.Divide & Conquer 分治

分治的思路整体和递归是一样的,我们需要先将 Problem 转化为子问题 Sub-Problem,然后针对每个 Sub-Problem 进行解决,最后将多个 Sub-Solution 合并得到最终结果,下面的代码模版就是按照上面的思路来实现。

2.BackTrack 回溯

基于 base 情况,不断向前试探,试探成功找到结果,试探失败回撤,并且恢复上一步的状态。 

三.经典算法实战

1.Combination-Of-Phone [17]

电话号码组合: https://leetcode.cn/problems/letter-combinations-of-a-phone-number/description/

◆ 题目分析

分别获取数字及其对应的字符,逐层遍历即可。

◆ 回溯实现

class Solution(object):def letterCombinations(self, digits):""":type digits: str:rtype: List[str]"""if not digits:return []phone_map = {"2": "abc","3": "def","4": "ghi","5": "jkl","6": "mno","7": "pqrs","8": "tuv","9": "wxyz"}combination = []res = []def backtrack(position):if position == len(digits):res.append("".join(combination))return # 遍历当前数字的多个字母digit = digits[position]for letter in phone_map[digit]:combination.append(letter)backtrack(position + 1)combination.pop()backtrack(0)return res

人肉递归的方式可以参考这个图理解。 

2.Permutations [46]

全排列: https://leetcode-cn.com/problems/permutations/

◆ 题目分析

按照回溯思路实现,从 0 到 len(nums) 固定每个位置,将该元素与其后方元素依次调换位置,直至最后一个元素即可。

◆ 回溯实现

class Solution(object):def permute(self, nums):""":type nums: List[int]:rtype: List[List[int]]"""res = []def backtrack(position, end):if position == end:res.append(nums[:])returnfor i in range(position, end):nums[i], nums[position] = nums[position], nums[i]backtrack(position + 1, end)nums[i], nums[position] = nums[position], nums[i]backtrack(0, len(nums))return res

第一次循环遍历位置 0,因为 replace 的原因,所以位置 0 上每个元素都会出现一次,在该基础上,固定第一个位置,分别将剩余元素分别替换至位置 1,以此类推。可以理解为第一次循环把位置 0 的所有可能遍历一遍, [0] [1] [2] 这样,第二次基于前面的基础 [0, 1] [0,2]、[1,0] [1, 2] 这样,... 以此类推。 

3.Permutations-2 [47]

全排列2: https://leetcode.cn/problems/permutations-ii/

◆ 题目分析

按照回溯思路实现,从 0 到 len(nums) 固定每个位置,将该元素与其后方元素依次调换位置,直至最后一个元素即可。和上面方法一致。

◆ 回溯实现

class Solution(object):def permuteUnique(self, nums):""":type nums: List[int]:rtype: List[List[int]]"""res = []# 回溯起始位置def backtrack(position, end):if position == end:res.append(nums[:])returnfor i in range(position, end):# position 位置的 N 种可能nums[position],nums[i] = nums[i], nums[position]# 固定 position 位置,在此基础上固定 position + 1 的位置backtrack(position + 1, end)# 回复原始状态供后面 position 从初始状态遍历nums[position],nums[i] = nums[i], nums[position]backtrack(0, len(nums))res = list(set(tuple(sub) for sub in res))res = [list(sub) for sub in res]return res

在上一题的基础上进行去重,set 支持 tuple 不支持 list 去重,所以需要转换,时空复杂度都比较高。

◆ 去重优化

class Solution(object):def permuteUnique(self, nums):""":type nums: List[int]:rtype: List[List[int]]"""res = []# 回溯起始位置def backtrack(position, end):if position == end:res.append(nums[:])returnrepeat = set()for i in range(position, end):if nums[i] in repeat:continuerepeat.add(nums[i])# position 位置的 N 种可能nums[position],nums[i] = nums[i], nums[position]# 固定 position 位置,在此基础上固定 position + 1 的位置backtrack(position + 1, end)# 回复原始状态供后面 position 从初始状态遍历nums[position],nums[i] = nums[i], nums[position]backtrack(0, len(nums))return res

最后全局去重的时间、空间复杂度都很高,我们修改为递归内判断,在 for 循环之前增加 set,如果 position-end 区间有相同元素则直接 continue 跳过即可。

4.Pow-X [50]

求 x 的 n 次方: https://leetcode.cn/problems/powx-n/description/

◆ 题目分析

Problem =  2^10,sub-problem = 2^5,我们处理的话就是 2^ (n/2)

Problem = 2^5,sub-problem = 2^2,我们处理的话还是 2^ (n/2),但是遗漏一个 2

所以我们还需要区分 n/2 是否整除,整除 x^n = x^(n/2) * x^(n/2) 不整除则再多乘一个 2。

◆ 递归实现

class Solution(object):def myPow(self, x, n):""":type x: float:type n: int:rtype: float"""# x^0 == 1if n == 0:return 1.0if n == 1:return xif n == -1:return 1 / xhalf = self.myPow(x, int(n / 2))rest = self.myPow(x, n % 2)return half * half * rest

 half 负责将 2^n 减半,rest 负责检查是否需要补充一个 2。

5.N-Queen [51]

N 皇后: https://leetcode.cn/problems/n-queens/description/

◆ 题目分析

给定 n x n 的棋盘放置皇后,要求其上下左右和对角线都不可以放置其他皇后,观察棋盘坐标,我们可以发现是否同一行同一列比较简单,row / col 相等即可,对于左右 45° 的对角线,我们可以通过 row col 组合获取,这里我们称为撇 pie 和捺 na,pie 上的元素 row + col 都相同,na 上的元素 row - col 都相同,这样通过 row、col 我们即可判断所有可行的情况,剩下递归即可。 

◆ 回溯实现 

class Solution(object):def solveNQueens(self, n):""":type n: int:rtype: List[List[str]]"""results = []# 行 左 右 是否可以放置cols = set()pie = set()na = set()def dfs(n, row, cur):if row >= n:results.append(cur)for col in range(n):if col in cols or (row + col) in pie or (row - col) in na:continue# 判断有效cols.add(col)pie.add(row + col)na.add(row - col)dfs(n, row + 1, cur + [col])# 恢复状态cols.remove(col)pie.remove(row + col)na.remove(row - col)dfs(n, 0, [])return self.genResult(n, results)def genResult(self, n, results):return [[ '.' * i + 'Q' + (n - i - 1) * '.' for i in result] for result in results]def genResultV2(self, n, results):re = []for result in results:re.append([ '.' * i + 'Q' + (n - i - 1) * '.' for i in result])return re

这里最后获取 results 后还需要给出棋盘的形态,所以我们需要根据索引构建 '.' 和 'Q' 的关系。

6.Combinations [78]

组合: https://leetcode.cn/problems/combinations/description/

◆ 题目分析

固定第一个数字,向后遍历其他结果,待数量达到 k 停止,再回溯,固定下一个数字,向后寻找结果,直到 n-k 时再循环一次结束。

◆ 回溯实现

class Solution(object):def combine(self, n, k):res = []self.get_combine(res, [], n, k, 1)return resdef get_combine(self, res, prefix, n, k, start):if k == 0:# K 个结果找到了res.append(list(prefix))elif start <= n:# 添加当前结果prefix.append(start)# 添加完 start , 还需要 k-1 个, start + 1 去重self.get_combine(res, prefix,n, k - 1, start + 1)# 恢复状态,还需要 k 个,从 start + 1 开始prefix.pop()self.get_combine(res, prefix,n, k, start + 1)

其运行过程可以参考下图,固定 1 之后,start_index 一直向后查找添加 [1, 2]、[1, 3]、[1, 4] 后,start_index 为 5,[1] 结束,pop 得到 [],start_index + 1,再固定 2 从 2 开始 ... 

◆ 树形结合

class Solution(object):def combine(self, n, k):res = []com = []def backtracking(n, k, start_index):if len(com) == k:res.append(com[:])return # 因为全排列不包含 0,所以最后 + 1for num in range(start_index, n + 1):com.append(num)backtracking(n, k, num + 1) # 递归com.pop() # 回溯backtracking(n, k, 1)return res

每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围。

图中可以发现 n 相当于树的宽度,k 相当于树的深度,代码遵照下述思路完成。

◆ 剪枝优化

class Solution(object):def combine(self, n, k):res = []com = []def backtracking(n, k, start_index):if len(com) == k:res.append(com[:])return last_index = n - (k - len(com)) + 1# 因为全排列不包含 0,所以最后 + 1for num in range(start_index, last_index + 1):com.append(num)backtracking(n, k, num + 1) # 递归com.pop() # 回溯backtracking(n, k, 1)return res

本题还可以通过剪枝进行优化,对于遍历而言,当 n=4、k=2 时,我们就没有必要再从 4 开始遍历了,因为后面已经不足以拼到 2 个数字了,所以我们优化一下循环的次数 n - (k - len(com)) + 1。

7.Sub-Sets [78]

子集: https://leetcode.cn/problems/subsets/description/ 

◆ 题目分析

遍历多种情况, 假设 [1, 2, 3],我们可以先遍历 [1] 生成所有情况,再遍历 [2] 和之前的情况结合并添加,随后继续,每次结果都会翻倍,因为新的数字会和之前的每个结果生成一个新的结果并添加。

◆ 循环实现

class Solution(object):def subsets(self, nums):""":type nums: List[int]:rtype: List[List[int]]"""res = [[]]# 遍历每个数字for i in nums:res = res + [[i] + re for re in res]return res

8.Majority-Element [169]

多数元素: https://leetcode-cn.com/problems/majority-element/description/

◆ 题目分析

第一感觉是 wordcount 直接判断即可,但是既然出在回溯和分治的章节,说明其还有其他方法,我们两种方法尝试下。

◆ 字典计数

class Solution(object):def majorityElement(self, nums):""":type nums: List[int]:rtype: int"""limit = len(nums) / 2count = {}for i in nums:if i not in count:count[i] = 0# 判断是否超过 n/2if count[i] + 1 > limit:return ielse:count[i] += 1return 0

 计数判断即可。

◆ 分治实现

class Solution:def majorityElement(self, nums):def backtrack(lo, hi):# base case; the only element in an array of size 1 is the majority# element.if lo == hi:return nums[lo]# recurse on left and right halves of this slice.mid = (hi - lo) // 2 + loleft = backtrack(lo, mid)right = backtrack(mid + 1, hi)# if the two halves agree on the majority element, return it.if left == right:return left# otherwise, count each element and return the "winner".left_count = sum(1 for i in range(lo, hi + 1) if nums[i] == left)right_count = sum(1 for i in range(lo, hi + 1) if nums[i] == right)return left if left_count > right_count else rightreturn backtrack(0, len(nums) - 1)

如果数 a 是数组 nums 的众数,如果我们将 nums 分成两部分,那么 a 必定是至少一部分的众数,所以题目将数组不断拆分,并获取两个部分的众数,这里不是太推荐使用分治法,因为这个场景复杂度太高。

四.总结

本文介绍了回溯和分治的思想和算法题目,观察上面的算法题目,我们可以发现其在代码上都遵循了简介中的模版而且写起来很相似,所以还是要多花时间去体会题目的要求的实现的方法,多巩固多练习。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/578136.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数组基础及相关例题

目录 1.一维数组的初始化 2.二维数组的初始化 3.字符数组 1.puts 2.gets 3.strcat 4.strcpy 5.strcmp 6.strlen ​编辑 7. strlwr与strupr 易错习题 1 2 3 4 5 6 1.一维数组的初始化 2.二维数组的初始化 注意 第一维的长度不用指定&#xff0c;第二维的…

方舟开发框架(ArkUI)概述

目录 1、基本概念 2、两种开发范式 3、开发框架的特性 4、UI开发&#xff08;ArkTS声明式开发范式&#xff09;概述 4.1、特点 4.2、整体架构 4.3、开发流程 方舟开发框架&#xff08;简称ArkUI&#xff09;为HarmonyOS应用的UI开发提供了完整的基础设施&#xff0c;包…

C# 通过SharpCompress.Archives.Rar解压RaR文件

/// <summary>/// 解压一个Rar文件/// </summary>/// <param name"RarFile">需要解压的Rar文件&#xff08;绝对路径&#xff09;</param>/// <param name"TargetDirectory">解压到的目录</param>/// <param name&…

基于SSM的学生成绩管理系统2.0

基于SSM的学生成绩管理系统2.0 一、系统介绍二、功能展示1.项目骨架2.成绩信息列表3.课程信息列表4.添加学生信息 四、其它1.其他系统实现五.获取源码 一、系统介绍 项目名称&#xff1a;基于SSM的学生成绩管理系统2.0 项目架构&#xff1a;B/S架构 开发语言&#xff1a;Jav…

2024年科技盛宴“上海智博会·上海软博会”招商工作接近尾声

2024年上海智博会和上海软博会即将于3月份在上海跨国采购会展中心盛大召开。作为全球科技和软件行业的盛会&#xff0c;这两大展会汇集了业界顶尖的企业、创新技术和前瞻思想&#xff0c;吸引了来自世界各地的专业人士和参展商。 今年的展会将一如既往地为大家呈现最前沿的科技…

博易大师智星系统外盘资管系统的功能介绍!

1. 市场行情数据接收和显示&#xff1a;软件需要接收实时的市场行情数据&#xff0c;并将其以图形或数字的形式显示出来&#xff0c;包括价格、成交量、成交额等信息。 2. 交易操作界面&#xff1a;软件需要提供一个交易操作界面&#xff0c;供用户进行交易操作&#xff0c;包括…

DML语言(重点)———update

格式&#xff1a;update 要修改的对象 set 原来的值新值 -- 修改学员名字,带了简介 代码案例&#xff1a; -- 修改学员名字,带了简介 UPDATE student SET name清宸 WHERE id 1; -- 不指定条件情况下&#xff0c;会改动所有表&#xff01; 代码案例…

linux:下载、网络请求、端口

一&#xff1a;ping命令 可以通过ping命令,检查指定的网络服务器是否是可联通状态 语法: ping [-c num] ip或主机名 1、选项&#xff1a;-c,检查的次数&#xff0c;不使用-c选项&#xff0c;将无限次数持续检查 2、参数&#xff1a;ip或主机名&#xff0c;被检查的服务器的…

修复“找不到服务器IP地址”错误

“找不到服务器IP地址”错误是Chrome浏览器用户的常见问题&#xff0c;导致404消息和无法访问网页 一、错误解释&#xff1a;找不到服务器 IP 地址 当您在浏览器的地址栏中输入域名时&#xff0c;如果输入的域名与相应的 Internet 协议地址&#xff08;IP 地址&#xff09;不…

文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《流量自适应方式下考虑热管道虚拟储能的电热能源系统优化调度》

这个标题探讨了在电热能源系统中&#xff0c;通过使用热管道作为一种虚拟储能手段&#xff0c;并结合流量自适应的方式&#xff0c;进行系统的优化调度。 流量自适应方式&#xff1a; 这可能指的是一种系统或算法&#xff0c;能够根据系统内部或外部的实时变化&#xff0c;自动…

python 通过opencv及face_recognition识别人脸

效果&#xff1a; 使用Python的cv2库和face_recognition库来进行人脸检测和比对的 0是代表一样 认为是同一人。 代码&#xff1a; pip install opencv-python pip install face_recognition# 导入cv2库&#xff0c;用于图像处理 import cv2 # 导入face_recognition库&#…

开源持续测试平台Linux MeterSphere本地部署与远程访问

文章目录 前言1. 安装MeterSphere2. 本地访问MeterSphere3. 安装 cpolar内网穿透软件4. 配置MeterSphere公网访问地址5. 公网远程访问MeterSphere6. 固定MeterSphere公网地址 前言 MeterSphere 是一站式开源持续测试平台, 涵盖测试跟踪、接口测试、UI 测试和性能测试等功能&am…

2023年国赛高教杯数学建模E题黄河水沙监测数据分析解题全过程文档及程序

2023年国赛高教杯数学建模 E题 黄河水沙监测数据分析 原题再现 黄河是中华民族的母亲河。研究黄河水沙通量的变化规律对沿黄流域的环境治理、气候变化和人民生活的影响&#xff0c;以及对优化黄河流域水资源分配、协调人地关系、调水调沙、防洪减灾等方面都具有重要的理论指导…

Swagger快速入门

1、Swagger快速入门 1.1 swagger介绍 官网&#xff1a;https://swagger.io/ Swagger 是一个规范和完整的Web API框架&#xff0c;用于生成、描述、调用和可视化 RESTful 风格的 Web 服务。 功能主要包含以下几点: A. 使得前后端分离开发更加方便&#xff0c;有利于团队协作…

Jenkins的邮箱配置和插件下载

启动&#xff1a;java -jar jenkins.war 一定在jenkins.war的目录下 进入cmd命令 浏览器输入网址&#xff1a;http://localhost:8080/login?from%2F 账号&#xff1a;admin 密码&#xff1a;123456 安装插件&#xff1a; 插件更新后重启下 配置邮箱账号&#xff1a; 3…

到底是前端验证还是后端验证

背景 软件应用研发中&#xff0c; 前端验证还是后端验证这是意识与认知问题。鉴于某些入门同学还不清楚&#xff0c;我们再来看下&#xff1a; 一. 从软件行业来自国外 Q: 前端验证和后端验证都是对同一个数据的验证&#xff0c;有什么区别&#xff1f; A: 二者的目的不同&…

有趣的多线程:累计相加-CompletableFuture优化

不优雅的地方 对结果的获取需要额外引入CountDownLatch等待所有线程执行完毕 CompletableFuture Future接口天然可以通过回调获取结果&#xff0c;所以可以利用CompletableFuture实现并行&#xff0c;并调用CompletableFuture.join获取结果 private static void completabl…

WPF中数据绑定转换器Converter

使用场景&#xff1a;ViewModel中的数据如果跟View中的数据类型不匹配。 下面是以int类型调控是否可见为例子 步骤一&#xff1a;创建转换器类 在xaml中查看Converter的定义可以知道Converter是一个接口类型&#xff0c;因此转换器的类定义需要使用这个接口 internal class Vi…

Thinkphp开发的返佣商城分销商城理财商城源码

&#xff08;本站长在localhost安装测试&#xff0c;发现提示有错&#xff0c;具体问题没有时间查找了&#xff0c;或者php解密插件没有安装&#xff0c;有能力的朋友自行折腾。&#xff09; 程序基于 THINKPHP6VUE 全新开发&#xff0c;保障安全的同时大大提高代码执行效率。…

css mask 案例

文章目录 一、基本用法二、图案遮罩二、文字阴影效果三、日历探照灯效果 CSS的mask属性用于定义一个可重复使用的遮罩&#xff0c;可以将其应用到任何可视元素上。这个功能类似于Photoshop中的图层蒙版。通过mask属性&#xff0c;可以创建独特的效果&#xff0c;比如圆形、渐变…