一、辅助排序
需求:先有一个订单数据文件,包含了订单id、商品id、商品价格,要求将订单id正序,商品价格倒序,且生成结果文件个数为订单id的数量,每个结果文件中只要一条该订单最贵商品的数据。
思路:1.封装订单类OrderBean,实现WritableComparable接口;
2.自定义Mapper类,确定输入输出数据类型,写业务逻辑;
3.自定义分区,根据不同的订单id返回不同的分区值;
4.自定义Reducer类;
5.辅助排序类OrderGroupingComparator继承WritableComparator类,并定义无参构成方法、重写compare方法;
6.书写Driver类;
代码如下:
/*** @author: PrincessHug* @date: 2019/3/25, 21:42* @Blog: https://www.cnblogs.com/HelloBigTable/*/
public class OrderBean implements WritableComparable<OrderBean> {private int orderId;private double orderPrice;public OrderBean() {}public OrderBean(int orderId, double orderPrice) {this.orderId = orderId;this.orderPrice = orderPrice;}public int getOrderId() {return orderId;}public void setOrderId(int orderId) {this.orderId = orderId;}public double getOrderPrice() {return orderPrice;}public void setOrderPrice(double orderPrice) {this.orderPrice = orderPrice;}@Overridepublic String toString() {return orderId + "\t" + orderPrice;}@Overridepublic int compareTo(OrderBean o) {int rs ;if (this.orderId > o.getOrderId()){rs = 1;}else if (this.orderId < o.getOrderId()){rs = -1;}else {rs = (this.orderPrice > o.getOrderPrice()) ? -1:1;}return rs;}@Overridepublic void write(DataOutput out) throws IOException {out.writeInt(orderId);out.writeDouble(orderPrice);}@Overridepublic void readFields(DataInput in) throws IOException {orderId = in.readInt();orderPrice = in.readDouble();}
}public class OrderMapper extends Mapper<LongWritable, Text,OrderBean, NullWritable> {@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {//获取数据String line = value.toString();//切割数据String[] fields = line.split("\t");//封装数据int orderId = Integer.parseInt(fields[0]);double orderPrice = Double.parseDouble(fields[2]);OrderBean orderBean = new OrderBean(orderId, orderPrice);//发送数据context.write(orderBean,NullWritable.get());}
}public class OrderPartitioner extends Partitioner<OrderBean, NullWritable> {@Overridepublic int getPartition(OrderBean orderBean, NullWritable nullWritable, int i) {//构造参数中i的值为reducetask的个数return (orderBean.getOrderId() & Integer.MAX_VALUE ) % i;}
}public class OrderReducer extends Reducer<OrderBean, NullWritable,OrderBean,NullWritable> {@Overrideprotected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {context.write(key,NullWritable.get());}
}public class OrderGrouptingComparator extends WritableComparator {//必须使用super调用父类的构造方法来定义对比的类为OrderBeanprotected OrderGrouptingComparator(){super(OrderBean.class,true);}@Overridepublic int compare(WritableComparable a, WritableComparable b) {OrderBean aBean = (OrderBean)a;OrderBean bBean = (OrderBean)b;int rs ;if (aBean.getOrderId() > bBean.getOrderId()){rs = 1;}else if (aBean.getOrderId() < bBean.getOrderId()){rs = -1;}else {rs = 0;}return rs;}
}public class OrderDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {//配置信息,Job对象Configuration conf = new Configuration();Job job = Job.getInstance(conf);//执行类job.setJarByClass(OrderBean.class);//设置Mapper、Reducer类job.setMapperClass(OrderMapper.class);job.setReducerClass(OrderReducer.class);//设置Mapper输出数据类型job.setMapOutputKeyClass(OrderBean.class);job.setMapOutputValueClass(NullWritable.class);//设置Reducer输出数据类型job.setOutputKeyClass(OrderBean.class);job.setOutputValueClass(NullWritable.class);//设置辅助排序job.setGroupingComparatorClass(OrderGrouptingComparator.class);//设置分区类job.setPartitionerClass(OrderPartitioner.class);//设置reducetask数量job.setNumReduceTasks(3);//设置文件输入输出流FileInputFormat.setInputPaths(job,new Path("G:\\mapreduce\\order\\in"));FileOutputFormat.setOutputPath(job,new Path("G:\\mapreduce\\order\\out"));//提交任务if (job.waitForCompletion(true)){System.out.println("运行完成!");}else {System.out.println("运行失败!");}}
}
由于这是敲了很多次的代码,没有加太多注释,请谅解!
二、Mapreduce整体的流程
1.有一块200M的文本文件,首先将待处理的数据提交客户端;
2.客户端会向Yarn平台提交切片信息,然后Yarn计算出所需要的maptask的数量为2;
3.程序默认使用FileInputFormat的TextInputFormat方法将文件数据读到maptask;
4.maptask运行业务逻辑,然后将数据通过InputOutputContext写入到环形缓冲区;
5.环形缓冲区其实是内存开辟的一块空间,就是内存,当环形缓冲区内数据达到默认大小100M的80%时,发生溢写;
6.溢写出的数据会进行多次的分区排序(shuffle机制,下一个随笔详细解释);
7.分区排序后的数据块可以选择进行Combiner合并,然后写入本地磁盘;
8.reducetask等maptask完全运行完毕后,开始从磁盘中读取maptask产出写出的数据,然后进行合并文件,归并排序(这时就是进行上面辅助排序的时候);
9.Reducer一次读取一组数据,然后使用默认的TextOutputFormat方法将数据写出到结果文件。