回归预测 | MATLAB实现TSO-ELM金枪鱼群优化算法优化极限学习机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现TSO-ELM金枪鱼群优化算法优化极限学习机多输入单输出回归预测(多指标,多图)

目录

    • 回归预测 | MATLAB实现TSO-ELM金枪鱼群优化算法优化极限学习机多输入单输出回归预测(多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3

基本介绍

回归预测 | MATLAB实现TSO-ELM金枪鱼群优化算法优化极限学习机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。
金枪鱼群优化算法(Tuna Search Algorithm)是一种基于金枪鱼觅食行为的启发式优化算法,用于解决优化问题。如果你想使用金枪鱼群优化算法来优化极限学习机。

程序设计

  • 完整源码和数据获取方式:私信回复TSO-ELM金枪鱼群算法优化极限学习机多输入单输出回归预测(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/56943.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【大数据】Linkis:打通上层应用与底层计算引擎的数据中间件

Linkis:打通上层应用与底层计算引擎的数据中间件 1.引言2.背景3.设计初衷4.技术架构5.业务架构6.处理流程7.如何支撑高并发8.用户级隔离度和调度时效性9.总结 Linkis 是微众银行开源的一款 数据中间件,用于解决前台各种工具、应用,和后台各种…

无锁并发:探秘CAS机制的魔力

😊 作者: 一恍过去 💖 主页: https://blog.csdn.net/zhuocailing3390 🎊 社区: Java技术栈交流 🎉 主题: 无锁并发:探秘CAS机制的魔力 ⏱️ 创作时间: 2…

4.6 TCP面向字节流

TCP 是面向字节流的协议,UDP 是面向报文的协议 操作系统对 TCP 和 UDP 协议的发送方的机制不同,也就是问题原因在发送方。 UDP面向报文协议: 操作系统不会对UDP协议传输的消息进行拆分,在组装好UDP头部后就交给网络层处理&…

Flask狼书笔记 | 03_模板

文章目录 3 模板3.1 模板基本使用3.2 模板结构组织3.3 模板进阶 3 模板 模板(template):包含固定内容和动态部分的可重用文件。Jinja2模板引擎可用于任何纯文本文件。 3.1 模板基本使用 HTML实体:https://dev.w3.org/html5/htm…

kafka学习笔记

1、kafka是什么? kafka是一个高吞吐,分布式,基于发布/订阅的消息系统,最大的特性就是可以实时的处理大量的数据以满足各种需求场景:日志收集,离线和在线的消息消费,等等 2、kakfa的基础架构&am…

算法竞赛入门【码蹄集新手村600题】(MT1220-1240)C语言

算法竞赛入门【码蹄集新手村600题】(MT1220-1240)C语言 目录MT1221 分数的总和MT1222 等差数列MT1223 N是什么MT1224 棋盘MT1225 复杂分数MT1226 解不等式MT1227 宝宝爬楼梯MT1228 宝宝抢糖果MT1229 搬家公司MT1230 圆周率MT1231圆周率IIMT1232 数字和MT1233 数字之…

c++的分文件编写

前言 在C中,你可以将代码分割成多个文件来提高可维护性和组织性。分割文件有助于将代码模块化,使大型项目更易于管理。以下是C中关于分文件的一些规则和概念: 理论知识 头文件(Header Files): 头文件通常…

聚类分析 | MATLAB实现基于DBSCAD密度聚类算法可视化

聚类分析 | MATLAB实现基于LP拉普拉斯映射的聚类可视化 目录 聚类分析 | MATLAB实现基于LP拉普拉斯映射的聚类可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 基于DBSCAD密度聚类算法可视化,MATLAB程序。 使用带有KD树加速的dbscan_with_kdtree函数进行…

Gateway简述

前言 ​ 在微服务架构中,一个系统会被拆分为很多个微服务。那么作为客户端调用多个微服务接口的地址。另外微服务架构的请求中,90%的都携带认证信息/用户登录信息,都需要做相关的限制管理,API网关由此应允而生。 这样的架构会存…

DevOps系列文章之 Python基础

列表 Python中的列表类似于C语言中的数组的概念,列表由内部的元素组成,元素可以是任何对象 Python中的列表是可变的 简单的理解就是:被初始化的列表,可以通过列表的API接口对列表的元素进行增删改查 1、定义列表 1.可以将列表当成…

《2023年网信人才培训-网络安全从业人员能力素养提升培训》第一期成功举办

随着网络强国和数字中国建设的步伐加快,建设规模宏大、结构合理、素质优良的人才队伍成为一项重要工作。知了汇智作为数字产教融合基地,通过与高校、企业等多方合作,建立了完整的网络安全人才培养生态链。凭借自身技术优势和丰富的产业资源&a…

m4s格式转换mp4

先安装 ffmpeg,具体从官网可以查到,https://ffmpeg.org,按流程走。 转换代码如下,可以任意选择格式导出 import subprocess import osdef merge_audio_video(input_audio_path, input_video_path, output_mp4_path):# 构建 FFmpe…

呈现数据的精妙之道:选择合适的可视化方法

在当今数据时代,数据可视化已成为理解和传达信息的重要手段。然而,选择适合的数据可视化方法对于有效地呈现数据至关重要。不同的数据和目标需要不同的可视化方法,下面我们将探讨如何选择最佳的数据可视化方法来呈现数据。 1. 理解数据类型&a…

在线OJ平台项目

一、项目源码 Online_Judge yblhlk/Linux课程 - 码云 - 开源中国 (gitee.com) 二、所用技术与开发环境 1.所用技术: MVC架构模式 (模型-视图-控制器) 负载均衡系统设计 多进程、多线程编程 C面向对象编程 & C 11 & STL 标准库 C Boost 准标…

【前端】CSS技巧与样式优化

目录 一、前言二、精灵图1、什么是精灵图2、为什么需要精灵图3、精灵图的使用①、创建CSS精灵图的步骤1)、选择合适的图标2)、合并图片3)、设置背景定位 ②、优化CSS精灵图的技巧1)、维护方便2)、考虑Retina屏幕3&…

业务系统架构实践总结

我从2015年起至今2022年,在业务平台(结算、订购、资金)、集团财务平台(应收应付、账务核算、财资、财务分析、预算)、本地生活财务平台(发票、结算、预算、核算、稽核)所经历的业务系统研发实践…

18V降压5V芯片

航誉微高效率同步降压芯片。输出电流可以高达2A。采用两种工作模式:PWM与PFM切换工作。92%的占空比实现了低压操作并延长了便携系统的电池使用寿命;输出电压可调;振荡频率为 600KHz(典型值)。内部同步开关提高了效率并…

D.OASIS City 和 Warrix 在The Sandbox 庆祝 Rise of the 10th Legend十周年

D.OASIS 首次展示了变革性娱乐 D.OASIS City,正如它与 WARRIX 一起承诺的那样。WARRIX 是获得泰国国家队球衣生产授权的标志性运动服装品牌。 这款激动人心的游戏冒险游戏于今天推出,让用户能够投入 D.OASIS City x WARRIX:Rise of the 10th…

一文速学-让神经网络不再神秘,一天速学神经网络基础-激活函数(二)

前言 思索了很久到底要不要出深度学习内容,毕竟在数学建模专栏里边的机器学习内容还有一大半算法没有更新,很多坑都没有填满,而且现在深度学习的文章和学习课程都十分的多,我考虑了很久决定还是得出神经网络系列文章,…

健康安全的新定义,照明舒适达到巅峰,SUKER书客护眼台灯L1震撼发售

深耕照明领域多年的SUKER书客,这一次给大家带来一份大惊喜。在最近正式发布新品——SUKER书客护眼台灯L1,这款护眼台灯承载着在照明领域的前沿技术,能保证照明安全健康和舒适度并带来非常优秀的护眼效果。作为书客在护眼台灯领域的颠覆式新品…