【大数据】Linkis:打通上层应用与底层计算引擎的数据中间件

Linkis:打通上层应用与底层计算引擎的数据中间件

  • 1.引言
  • 2.背景
  • 3.设计初衷
  • 4.技术架构
  • 5.业务架构
  • 6.处理流程
  • 7.如何支撑高并发
  • 8.用户级隔离度和调度时效性
  • 9.总结

Linkis 是微众银行开源的一款 数据中间件,用于解决前台各种工具、应用,和后台各种计算存储引擎间的连接、访问和复用问题。

1.引言

Linkis,一个打通了多个计算存储引擎如 SparkTiSparkHivePythonHBase 等,对外提供统一 REST / WebSocket / JDBC 接口,提交执行 SQLPysparkHiveQLScala 等脚本的数据中间件。

Linkis 基于微服务架构,提供了金融级多租户隔离、资源管控、权限隔离等企业级特性,支持统一变量、UDF、函数、用户资源文件管理,具备高并发、高性能、高可用的大数据作业 / 请求全生命周期管理能力。

2.背景

大数据技术的广泛应用,催生出层出不穷的上层应用和下层计算引擎。

通过引入多个开源组件来实现业务需求,不断更新和丰富大数据平台架构,几乎是现阶段所有企业的通用做法。

如下图所示,当我们的上层应用、工具系统,和底层的计算存储组件越来越多时,整个数据平台的情况就会变成如上图的网状结构。

在这里插入图片描述
不断引入新组件来实现业务需求,越来越多的痛点也随之产生:

  • 业务需求变化多端,上层组件各具特色,用户使用起来割裂感强烈,学习成本高昂。
  • 数据种类繁多,存储和计算非常复杂,一个组件一般只解决一个问题,开发人员必须具备完善的技术栈。
  • 新组件的引入,在多租户隔离、用户资源管理、用户权限管理等无法兼容原有数据平台,自上而下的定制化开发,不仅工程浩大,而且重复造轮子。
  • 上层应用直接对接底层计算存储引擎,一旦底层环境发生任何改变,都会直接影响业务产品的正常使用。

3.设计初衷

如何提供统一的数据中间件,对接上层应用工具,屏蔽掉底层的各种调用和使用细节,真正做到让业务用户只需关注业务实现,就算底层平台机房扩建、整体搬迁都不受影响,是 Linkis 的设计初衷!

在这里插入图片描述

4.技术架构

在这里插入图片描述
如上图所示,我们基于 SpringCloud 微服务技术,新建了多个微服务集群,来打造 Linkis 的中间件能力。

每个微服务集群都承担系统的一部分功能职责,我们对其进行了如下明确的划分。如:

  • 统一作业执行服务(UJES):一个分布式的 REST / WebSocket 服务,用于接收上层系统提交的各种访问请求。
    • 目前支持的计算引擎有:SparkPythonTiSparkHiveShell 等。
    • 支持的脚本语言有:SparkSQLSpark ScalaPysparkRPythonHQLShell 等;
  • 资源管理服务(RM): 支持实时管控每个系统和用户的资源使用情况,限制系统和用户的资源使用量和并发数,并提供实时的资源动态图表,方便查看和管理系统和用户的资源。
    • 目前已支持的资源类型:Yarn 队列资源、服务器(CPU 和内存)、用户并发个数等。
  • 统一存储服务(Storage):通用的 IO 架构,能快速对接各种存储系统,提供统一调用入口,支持所有常用格式数据,集成度高,简单易用。
  • 统一上下文服务(CS):统一用户和系统的资源文件(用户脚本、JARZIPProperties 等),用户、系统、计算引擎的参数和变量统一管理,一处设置,处处自动引用。
  • 物料库服务(BML):系统和用户级物料管理,可分享和流转,支持全生命周期自动管理。
  • 元数据服务(Database):实时的 Hive 库表结构和分区情况展示。

依赖这些微服务集群的相互协作,我们改善了整个大数据平台对外服务的方式和流程。

5.业务架构

在这里插入图片描述

  • Gateway 网关:基于 Spring Cloud Gateway 进行了插件化功能增强,新增了前端 Client 与后台多 WebSocket 微服务 1 1 1 N N N 支持,主要用于解析和路由转发用户的请求到指定微服务。

  • 统一入口:统一入口是用户某一类引擎作业的 Job 生命周期管理者。从接收作业、作业提交给执行引擎、到作业执行信息反馈给用户,再到作业完成,Entrance 管理了一个作业的全生命周期。

  • 引擎管理器:引擎管理器负责管理引擎的全生命周期。负责向资源管理服务申请和锁定资源,并实例化新的引擎,也负责监控引擎的生命状态。

  • 执行引擎:执行引擎是真正执行用户作业的微服务,它由引擎管理器启动。为了提升交互性能,执行引擎直接跟统一入口进行交互,实时推送执行的日志、进度、状态和结果集给统一入口。

  • 资源管理服务:实时管控每个系统和每个用户的资源使用情况,管理引擎管理器的资源使用和实际负载,限制系统和用户的资源使用量和并发数。

  • Eureka:Eureka 是 Netflix 开发的服务发现框架,SpringCloud 将它集成在其子项目 spring-cloud-netflix 中,以实现 SpringCloud 的服务发现功能。每个微服务都内置了 Eureka Client,可以访问 Eureka Server,实时获得服务发现的能力。

6.处理流程

Linkis 如何处理上层系统提交的一条 SparkSQL?

在这里插入图片描述

  • 上层系统的用户提交一个 SQL,先经过 GatewayGateway 负责解析用户请求,并路由转发给合适的统一入口 Entrance
  • Entrance 会先寻找该系统的该用户是否存在可用的 Spark 引擎服务,如果存在,则直接将请求提交给 Spark 引擎服务。
  • 不存在可用 Spark 引擎服务,开始通过 Eureka 的服务注册发现功能,拿到所有的引擎管理器列表,通过请求 RM 实时获取引擎管理器的实际负载。
  • Entrance 拿到负载最低的引擎管理器,开始要求引擎管理器启动一个 Spark 引擎服务。
  • 引擎管理器接收到请求,开始询问 RM 该系统下的该用户,是否可以启动新引擎。
  • 如果可以启动,则开始请求资源并锁定;否则返回启动失败的异常给到 Entrance
  • 锁定资源成功,开始启动新的 Spark 引擎服务;启动成功后,将新 Spark 新引擎返回给 Entrance
  • Entrance 拿到新引擎后,开始向新引擎请求执行 SQL。
  • Spark 新引擎接收 SQL 请求,开始向 Yarn 提交执行 SQL,并实时推送日志、进度和状态给 Entrance
  • Entrance 将获取的日志、进度和状态实时推送给 Gateway
  • Gateway 回推日志、进度和状态给前端。
  • 一旦 SQL 执行成功,Engine 主动将结果集推给 EntranceEntrance 通知前端拿取结果。

如何保证高实时性

众所周知,Spring Cloud 集成了 Feign 来作为微服务之间的通信工具。

基于 Feign 的微服务之间 HTTP 接口调用,只支持 A 微服务实例根据简单规则随机访问 B 微服务的某个实例。

但 Linkis 的执行引擎,却可以直接主动推送日志、进度和状态给请求它的统一入口,Linkis 是如何做到的?

Linkis 基于 Feign 实现了一套自己的底层 RPC 通信方案。

在这里插入图片描述
如上图所示,我们在 Feign 的基础上,封装出了 SenderReceiver

Sender 作为发送端直接可用,用户可以指定访问某个微服务实例,也可以随机访问,还支持广播。

Receiver 作为接收端,需要用户实现 Receiver 接口,用于处理真正的业务逻辑即可。

Sender 提供三种访问方式,如下:

  • ask 方法为同步请求响应方法,要求接收端必须同步返回响应。

  • send 方法为同步请求方法,只负责同步将请求发送给接收端,不要求接收端给出答复。

  • deliver 则为异步请求方法,只要发送端的进程不异常退出,在稍后会通过其它线程将请求发送给接收端。

7.如何支撑高并发

Linkis 设计了 5 5 5 大异步消息队列和线程池,Job 每次占用线程不到 1 1 1 毫秒,保证每个统一入口可承接超 10000 10000 10000+ TPS 常驻型 Job 请求。

在这里插入图片描述

  • 如何提高上层的请求吞吐能力?
    • EntranceWebSocket 处理器,内置一个处理线程池和处理队列,接收 Spring Cloud Gateway 路由转发的上层请求。
  • 如何保证不同系统不同用户的执行请求,互相隔离?
    • EntranceJob 调度池,每个系统的每个用户,都有一个专用线程,保证隔离度。
  • 如何保证 Job 执行高效?
    • Job 执行池,只用于提交 Job,一旦 Job 提交给了 Engine 端,则立马放入 Job 执行队列,保证每个 Job 占用执行池线程的时间不超过 1 1 1 毫秒。
    • RPC 请求接收池,用于接收和处理 Engine 端推来的日志、进度、状态和结果集,并实时更新 Job 的相关信息。
  • 如何实时将 Job 的日志、进度和状态推给上层系统?
    • WebSocket 发送池,专门用于处理 Job 的日志、进度和状态,将信息推给上层系统。

8.用户级隔离度和调度时效性

Linkis 设计了 Scheduler 模块 —— 可智能监控扩展的分组调度消费模块,用于实现 Linkis 的高并发能力。

在这里插入图片描述
每个系统的每个用户,都会单独分组,来保证系统级和用户级的隔离度。

每个消费器均有一个独立的监控线程,统计消费器中等待队列的长度、正在执行的事件数量、执行时间的增长比例等指标。

消费器所对应的分组对象,会对这些指标设置阈值和告警比例,一旦某个指标超过阈值,或多个指标间的比例超过限定范围(比如监控到平均执行时间大于分发间隔参数,即认为超过阈值),监控线程就会立即对消费器进行相应的扩展。

扩展时,会充分利用上述的调参过程,具有针对性的调大某个参数,其它参数会自动随之得到扩展。

9.总结

Linkis 作为数据中间件,为实现对下层调用细节的屏蔽,做了许多的尝试和努力。

比如:Linkis 如何实现统一存储服务?Linkis 如何统一 UDF、函数和用户变量?

由于篇幅所限,本文不再详细论述,如您感兴趣,欢迎您访问官网:https://linkis.apache.org

有没有一套真正基于开源,经过金融级生产环境和场景的自研打磨完善,再回到开源社区的数据中间件,让人能相对放心的拿去服务于生产,支持金融级业务,具备企业级特性保障?

我们希望 Linkis 成为答案。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/56942.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

无锁并发:探秘CAS机制的魔力

😊 作者: 一恍过去 💖 主页: https://blog.csdn.net/zhuocailing3390 🎊 社区: Java技术栈交流 🎉 主题: 无锁并发:探秘CAS机制的魔力 ⏱️ 创作时间: 2…

4.6 TCP面向字节流

TCP 是面向字节流的协议,UDP 是面向报文的协议 操作系统对 TCP 和 UDP 协议的发送方的机制不同,也就是问题原因在发送方。 UDP面向报文协议: 操作系统不会对UDP协议传输的消息进行拆分,在组装好UDP头部后就交给网络层处理&…

Flask狼书笔记 | 03_模板

文章目录 3 模板3.1 模板基本使用3.2 模板结构组织3.3 模板进阶 3 模板 模板(template):包含固定内容和动态部分的可重用文件。Jinja2模板引擎可用于任何纯文本文件。 3.1 模板基本使用 HTML实体:https://dev.w3.org/html5/htm…

kafka学习笔记

1、kafka是什么? kafka是一个高吞吐,分布式,基于发布/订阅的消息系统,最大的特性就是可以实时的处理大量的数据以满足各种需求场景:日志收集,离线和在线的消息消费,等等 2、kakfa的基础架构&am…

算法竞赛入门【码蹄集新手村600题】(MT1220-1240)C语言

算法竞赛入门【码蹄集新手村600题】(MT1220-1240)C语言 目录MT1221 分数的总和MT1222 等差数列MT1223 N是什么MT1224 棋盘MT1225 复杂分数MT1226 解不等式MT1227 宝宝爬楼梯MT1228 宝宝抢糖果MT1229 搬家公司MT1230 圆周率MT1231圆周率IIMT1232 数字和MT1233 数字之…

c++的分文件编写

前言 在C中,你可以将代码分割成多个文件来提高可维护性和组织性。分割文件有助于将代码模块化,使大型项目更易于管理。以下是C中关于分文件的一些规则和概念: 理论知识 头文件(Header Files): 头文件通常…

聚类分析 | MATLAB实现基于DBSCAD密度聚类算法可视化

聚类分析 | MATLAB实现基于LP拉普拉斯映射的聚类可视化 目录 聚类分析 | MATLAB实现基于LP拉普拉斯映射的聚类可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 基于DBSCAD密度聚类算法可视化,MATLAB程序。 使用带有KD树加速的dbscan_with_kdtree函数进行…

Gateway简述

前言 ​ 在微服务架构中,一个系统会被拆分为很多个微服务。那么作为客户端调用多个微服务接口的地址。另外微服务架构的请求中,90%的都携带认证信息/用户登录信息,都需要做相关的限制管理,API网关由此应允而生。 这样的架构会存…

DevOps系列文章之 Python基础

列表 Python中的列表类似于C语言中的数组的概念,列表由内部的元素组成,元素可以是任何对象 Python中的列表是可变的 简单的理解就是:被初始化的列表,可以通过列表的API接口对列表的元素进行增删改查 1、定义列表 1.可以将列表当成…

《2023年网信人才培训-网络安全从业人员能力素养提升培训》第一期成功举办

随着网络强国和数字中国建设的步伐加快,建设规模宏大、结构合理、素质优良的人才队伍成为一项重要工作。知了汇智作为数字产教融合基地,通过与高校、企业等多方合作,建立了完整的网络安全人才培养生态链。凭借自身技术优势和丰富的产业资源&a…

m4s格式转换mp4

先安装 ffmpeg,具体从官网可以查到,https://ffmpeg.org,按流程走。 转换代码如下,可以任意选择格式导出 import subprocess import osdef merge_audio_video(input_audio_path, input_video_path, output_mp4_path):# 构建 FFmpe…

呈现数据的精妙之道:选择合适的可视化方法

在当今数据时代,数据可视化已成为理解和传达信息的重要手段。然而,选择适合的数据可视化方法对于有效地呈现数据至关重要。不同的数据和目标需要不同的可视化方法,下面我们将探讨如何选择最佳的数据可视化方法来呈现数据。 1. 理解数据类型&a…

在线OJ平台项目

一、项目源码 Online_Judge yblhlk/Linux课程 - 码云 - 开源中国 (gitee.com) 二、所用技术与开发环境 1.所用技术: MVC架构模式 (模型-视图-控制器) 负载均衡系统设计 多进程、多线程编程 C面向对象编程 & C 11 & STL 标准库 C Boost 准标…

【前端】CSS技巧与样式优化

目录 一、前言二、精灵图1、什么是精灵图2、为什么需要精灵图3、精灵图的使用①、创建CSS精灵图的步骤1)、选择合适的图标2)、合并图片3)、设置背景定位 ②、优化CSS精灵图的技巧1)、维护方便2)、考虑Retina屏幕3&…

业务系统架构实践总结

我从2015年起至今2022年,在业务平台(结算、订购、资金)、集团财务平台(应收应付、账务核算、财资、财务分析、预算)、本地生活财务平台(发票、结算、预算、核算、稽核)所经历的业务系统研发实践…

18V降压5V芯片

航誉微高效率同步降压芯片。输出电流可以高达2A。采用两种工作模式:PWM与PFM切换工作。92%的占空比实现了低压操作并延长了便携系统的电池使用寿命;输出电压可调;振荡频率为 600KHz(典型值)。内部同步开关提高了效率并…

D.OASIS City 和 Warrix 在The Sandbox 庆祝 Rise of the 10th Legend十周年

D.OASIS 首次展示了变革性娱乐 D.OASIS City,正如它与 WARRIX 一起承诺的那样。WARRIX 是获得泰国国家队球衣生产授权的标志性运动服装品牌。 这款激动人心的游戏冒险游戏于今天推出,让用户能够投入 D.OASIS City x WARRIX:Rise of the 10th…

一文速学-让神经网络不再神秘,一天速学神经网络基础-激活函数(二)

前言 思索了很久到底要不要出深度学习内容,毕竟在数学建模专栏里边的机器学习内容还有一大半算法没有更新,很多坑都没有填满,而且现在深度学习的文章和学习课程都十分的多,我考虑了很久决定还是得出神经网络系列文章,…

健康安全的新定义,照明舒适达到巅峰,SUKER书客护眼台灯L1震撼发售

深耕照明领域多年的SUKER书客,这一次给大家带来一份大惊喜。在最近正式发布新品——SUKER书客护眼台灯L1,这款护眼台灯承载着在照明领域的前沿技术,能保证照明安全健康和舒适度并带来非常优秀的护眼效果。作为书客在护眼台灯领域的颠覆式新品…

[JavaWeb]【九】web后端开发-SpringBootWeb案例(菜单)

目录 一、准备工作 1.1 需求 1.2 环境搭建 1.2.1 准备数据库&表 1.2.2 创建springboot工程 1.2.3 配置application.properties & 准备对应实体类 1.2.3.1 application.properties 1.2.3.2 实体类 1.2.3.2.1 Emp类 1.2.3.2.2 Dept类 1.2.4 准备对应的Mapper、…