比起传统的K-means算法,谱聚类对数据分布的适应性更强,计算量也要小很多。
1. 谱聚类概述
谱聚类是从图论中演化出来,主要思想是吧所有的数据看作空间中的点,这些点之间可以用边连接起来。距离较远的两个点之间的边权重值较低,而距离较近的两个点之间的权重值较高,通过对所有数据点组成的图进行切图,让切图后不同子图间边权重和尽可能的低,子图内的边权重和尽可能的高,从而达到聚类的目的。
2. 谱聚类基础之一:无向权重图
对于一个图G,我们一般用点的集合 V 和边的集合E来描述。即为G(V,E)。其中 V 即为我们数据集里面所有的点(v1,v2,...vn)。对于V中的任意两个点,可以有边连接,也可以没有边连接。我们定义权重wij为点vi和点vj之间的权重。由于我们是无向图,所以wij=wji。 对于有边连接的两个点vi和vj,wij>0,对于没有边连接的两个点vi和vj,wij=0。对于图中的任意一个点vi,它的度di定义为和它相连的所有边的权重之和
利用每个点度的定义,我们可以得到一个nxn的度矩阵D,它是一个对角矩阵,只有主对角线有值,对应第i行的第i个点的度数,定义如下:
利用所有点之间的权重值,我们可以得到图的邻接矩阵W,它也是一个n×n的矩阵,第i行的第j个值对应我们的权重wij。
除此之外,对于点集V的的一个子集A⊂V,我们定义:
3. 谱聚类基础之二:相似矩阵
在上一节我们讲到了邻接矩阵W,它是由任意两点之间的权重值wij组成的矩阵。通常我们可以自己输入权重,但是在谱聚类中,我们只有数据点的定义,并没有直接给出这个邻接矩阵,那么怎么得到这个邻接矩阵呢?
基本思想是,距离较远的两个点之间的边权重值较低,而距离较近的两个点之间的边权重值较高,不过这仅仅是定性,我们需要定量的权重值。一般来说,我们可以通过样本点距离度量的相似矩阵S来获得邻接矩阵W。
在实际的应用中,使用第三种全连接法来建立邻接矩阵是最普遍的,而在全连接法中使用高斯径向核RBF是最普遍的。
4. 谱聚类基础之三:拉普拉斯矩阵
单独把拉普拉斯矩阵(Graph Laplacians)拿出来介绍是因为后面的算法和这个矩阵的性质息息相关。它的定义很简单,拉普拉斯矩阵L=D−W。D即为我们第二节讲的度矩阵,它是一个对角矩阵。而W即为我们第二节讲的邻接矩阵,它可以由我们第三节的方法构建出。
拉普拉斯矩阵有一些很好的性质如下:
1)拉普拉斯矩阵是对称矩阵,这可以由D和W都是对称矩阵而得。
2)由于拉普拉斯矩阵是对称矩阵,则它的所有的特征值都是实数。
3)对于任意的向量f,我们有
4) 拉普拉斯矩阵是半正定的,且对应的n个实数特征值都大于等于0,即0=λ1≤λ2≤...≤λn, 且最小的特征值为0,这个由性质3很容易得出。
5. 谱聚类基础之四:无向图切图
对于无向图G的切图,我们的目标是将图G(V,E)切成相互没有连接的k个子图,每个子图点的集合为:A1,A2,..Ak,它们满足Ai∩Aj=∅,且A1∪A2∪...∪Ak=V.
那么如何切图可以让子图内的点权重和高,子图间的点权重和低呢?一个自然的想法就是最小化cut(A1,A2,...Ak), 但是可以发现,这种极小化的切图存在问题,如下图:
我们选择一个权重最小的边缘的点,比如C和H之间进行cut,这样可以最小化cut(A1,A2,...Ak), 但是却不是最优的切图,如何避免这种切图,并且找到类似图中"Best Cut"这样的最优切图呢?我们下一节就来看看谱聚类使用的切图方法。
6. 谱聚类之切图聚类
为了避免最小切图导致的切图效果不佳,我们需要对每个子图的规模做出限定,一般来说,有两种切图方式,第一种是RatioCut,第二种是Ncut。下面我们分别加以介绍。
6.1 RatioCut切图
RatioCut切图为了避免第五节的最小切图,对每个切图,不光考虑最小化cut(A1,A2,...Ak),它还同时考虑最大化每个子图点的个数,即:
由于我们在使用维度规约的时候损失了少量信息,导致得到的优化后的指示向量h对应的H现在不能完全指示各样本的归属,因此一般在得到nxk维度的矩阵H后还需要对每一行进行一次传统的聚类,比如使用K-Means聚类.
6.2 Ncut切图
7. 谱聚类算法流程
一般来说,谱聚类主要的注意点为相似矩阵的生成方式、切图的方式以及最后的聚类方法。最常用的相似矩阵的生成方式是基于高斯核距离的全连接方式。最常用的切图方式是Ncut。而到最后常用的聚类方法为K-Means。下面为Ncut总结的谱聚类算法流程。
输入:样本集D=(x1,x2,...,xn),相似矩阵的生成方式, 降维后的维度k1, 聚类方法,聚类后的维度k2
输出: 簇划分C(c1,c2,...ck2).
(1)根据输入的相似矩阵的生成方式构建样本的相似矩阵
(2)根据相似矩阵S构建邻接矩阵W,构建度矩阵D
(3)计算出拉普拉斯矩阵L
(4)构建标准化后的拉普拉斯矩阵D−1/2LD−1/2
(5)计算D−1/2LD−1/2 最小的k1个特征值所对应的特征向量f
(6)将各自对应的特征向量f组成的矩阵按行标准化,最终组成n×k1维的特征矩阵F
(7)对F中的每一行作为一个k1维的样本,共n个样本,用输入的聚类方法进行聚类,聚类维数为k2.
(8)得到簇划分C(c1,c2,...ck2).
8. 谱聚类算法总结
主要优点:
(1)谱聚类算法只需要数据之间的相似度矩阵,因此对于处理稀疏数据的聚类很有效。这点传统聚类算法比如K-Means很难做到
(2)由于使用了降维,因此在处理高维数据聚类时的复杂度比传统聚类算法好
主要缺点:
(1)如果最终聚类的维度非常高,则由于降维的幅度不够,谱聚类的运行速度和最后的聚类效果均不好
(2)聚类效果依赖于相似矩阵,不同的相似矩阵得到的最终聚类效果可能不同。
本文转自:
谱聚类(spectral clustering)原理总结www.cnblogs.com