惯性矩和偏心距描述器

这次我们将学会怎么使用pcl::MomentOfInertiaEstimation 这个类来获取以惯性矩和偏心距为基础的描述器。这个类也能提取坐标对称和定向包围的方形盒子。但是记住导出的OBB不是最小可能性的盒子。

下面介绍了该种方法的特征提取方式。第一次先算出点云矩阵的协方差,计算它的特征值和特征向量。然后把特征向量进行归一化处理,并把它组成右手坐标系。每一步都会迭代一次。每一次迭代特征向量都会旋转。选转的顺序总是一样的,总是被别的特征向量执行。这提供了选择不变性。我们把这个旋转的主向量作为当前的坐标系。

对于每一个惯性矩都会被计算。此外,当前的坐标系还被用于偏心距的计算。出于这个原因,当前的向量被当成一个平面的法线向量同时点云被投射到这个向量上。对于这个投射,偏心距会被计算。

完成上述实现的类还提供了方法来获得AABB和OBB。旋转的方形盒子被当做AABB和特征向量一起计算。

下面是一段代码

#include <pcl/features/moment_of_inertia_estimation.h>
#include <vector>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/cloud_viewer.h>
#include <boost/thread/thread.hpp>
int main (int argc, char** argv)
{
if (argc != 2)
return (0);
 boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));
viewer->setBackgroundColor (0, 0, 0);
viewer->addCoordinateSystem (1.0);
viewer->initCameraParameters ();
viewer->addPointCloud<pcl::PointXYZ> (cloud, "sample cloud");
viewer->addCube (min_point_AABB.x, max_point_AABB.x, min_point_AABB.y, max_point_AABB.y, min_point_AABB.z, max_point_AABB.z, 1.0, 1.0, 0.0, "AABB");
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ()); if (pcl::io::loadPCDFile (argv[1], *cloud) == -1) return (-1); pcl::MomentOfInertiaEstimation <pcl::PointXYZ> feature_extractor; feature_extractor.setInputCloud (cloud); feature_extractor.compute (); std::vector <float> moment_of_inertia; std::vector <float> eccentricity; pcl::PointXYZ min_point_AABB; pcl::PointXYZ max_point_AABB; pcl::PointXYZ min_point_OBB; pcl::PointXYZ max_point_OBB; pcl::PointXYZ position_OBB; Eigen::Matrix3f rotational_matrix_OBB; float major_value, middle_value, minor_value; Eigen::Vector3f major_vector, middle_vector, minor_vector; Eigen::Vector3f mass_center; feature_extractor.getMomentOfInertia (moment_of_inertia); feature_extractor.getEccentricity (eccentricity); feature_extractor.getAABB (min_point_AABB, max_point_AABB); feature_extractor.getOBB (min_point_OBB, max_point_OBB, position_OBB, rotational_matrix_OBB); feature_extractor.getEigenValues (major_value, middle_value, minor_value); feature_extractor.getEigenVectors (major_vector, middle_vector, minor_vector); feature_extractor.getMassCenter (mass_center); boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3D Viewer")); viewer->setBackgroundColor (0, 0, 0); viewer->addCoordinateSystem (1.0); viewer->initCameraParameters (); viewer->addPointCloud<pcl::PointXYZ> (cloud, "sample cloud"); viewer->addCube (min_point_AABB.x, max_point_AABB.x, min_point_AABB.y, max_point_AABB.y, min_point_AABB.z, max_point_AABB.z, 1.0, 1.0, 0.0, "AABB"); Eigen::Vector3f position (position_OBB.x, position_OBB.y, position_OBB.z); Eigen::Quaternionf quat (rotational_matrix_OBB); viewer->addCube (position, quat, max_point_OBB.x - min_point_OBB.x, max_point_OBB.y - min_point_OBB.y, max_point_OBB.z - min_point_OBB.z, "OBB"); pcl::PointXYZ center (mass_center (0), mass_center (1), mass_center (2)); pcl::PointXYZ x_axis (major_vector (0) + mass_center (0), major_vector (1) + mass_center (1), major_vector (2) + mass_center (2)); pcl::PointXYZ y_axis (middle_vector (0) + mass_center (0), middle_vector (1) + mass_center (1), middle_vector (2) + mass_center (2)); pcl::PointXYZ z_axis (minor_vector (0) + mass_center (0), minor_vector (1) + mass_center (1), minor_vector (2) + mass_center (2)); viewer->addLine (center, x_axis, 1.0f, 0.0f, 0.0f, "major eigen vector"); viewer->addLine (center, y_axis, 0.0f, 1.0f, 0.0f, "middle eigen vector"); viewer->addLine (center, z_axis, 0.0f, 0.0f, 1.0f, "minor eigen vector"); //Eigen::Vector3f p1 (min_point_OBB.x, min_point_OBB.y, min_point_OBB.z); //Eigen::Vector3f p2 (min_point_OBB.x, min_point_OBB.y, max_point_OBB.z); //Eigen::Vector3f p3 (max_point_OBB.x, min_point_OBB.y, max_point_OBB.z); //Eigen::Vector3f p4 (max_point_OBB.x, min_point_OBB.y, min_point_OBB.z); //Eigen::Vector3f p5 (min_point_OBB.x, max_point_OBB.y, min_point_OBB.z); //Eigen::Vector3f p6 (min_point_OBB.x, max_point_OBB.y, max_point_OBB.z); //Eigen::Vector3f p7 (max_point_OBB.x, max_point_OBB.y, max_point_OBB.z); //Eigen::Vector3f p8 (max_point_OBB.x, max_point_OBB.y, min_point_OBB.z); //p1 = rotational_matrix_OBB * p1 + position; //p2 = rotational_matrix_OBB * p2 + position; //p3 = rotational_matrix_OBB * p3 + position; //p4 = rotational_matrix_OBB * p4 + position; //p5 = rotational_matrix_OBB * p5 + position; //p6 = rotational_matrix_OBB * p6 + position; //p7 = rotational_matrix_OBB * p7 + position; //p8 = rotational_matrix_OBB * p8 + position; //pcl::PointXYZ pt1 (p1 (0), p1 (1), p1 (2)); //pcl::PointXYZ pt2 (p2 (0), p2 (1), p2 (2)); //pcl::PointXYZ pt3 (p3 (0), p3 (1), p3 (2)); //pcl::PointXYZ pt4 (p4 (0), p4 (1), p4 (2)); //pcl::PointXYZ pt5 (p5 (0), p5 (1), p5 (2)); //pcl::PointXYZ pt6 (p6 (0), p6 (1), p6 (2)); //pcl::PointXYZ pt7 (p7 (0), p7 (1), p7 (2)); //pcl::PointXYZ pt8 (p8 (0), p8 (1), p8 (2)); //viewer->addLine (pt1, pt2, 1.0, 0.0, 0.0, "1 edge"); //viewer->addLine (pt1, pt4, 1.0, 0.0, 0.0, "2 edge"); //viewer->addLine (pt1, pt5, 1.0, 0.0, 0.0, "3 edge"); //viewer->addLine (pt5, pt6, 1.0, 0.0, 0.0, "4 edge"); //viewer->addLine (pt5, pt8, 1.0, 0.0, 0.0, "5 edge"); //viewer->addLine (pt2, pt6, 1.0, 0.0, 0.0, "6 edge"); //viewer->addLine (pt6, pt7, 1.0, 0.0, 0.0, "7 edge"); //viewer->addLine (pt7, pt8, 1.0, 0.0, 0.0, "8 edge"); //viewer->addLine (pt2, pt3, 1.0, 0.0, 0.0, "9 edge"); //viewer->addLine (pt4, pt8, 1.0, 0.0, 0.0, "10 edge"); //viewer->addLine (pt3, pt4, 1.0, 0.0, 0.0, "11 edge"); //viewer->addLine (pt3, pt7, 1.0, 0.0, 0.0, "12 edge"); while(!viewer->wasStopped()) { viewer->spinOnce (100); boost::this_thread::sleep (boost::posix_time::microseconds (100000)); } return (0);}

让我们来对此解释一下

 pcl::MomentOfInertiaEstimation <pcl::PointXYZ> feature_extractor;
feature_extractor.setInputCloud (cloud);
feature_extractor.compute ();

上面的代码加载了点云文件

std::vector <float> moment_of_inertia;
std::vector <float> eccentricity;
pcl::PointXYZ min_point_AABB;
pcl::PointXYZ max_point_AABB;
pcl::PointXYZ min_point_OBB;
pcl::PointXYZ max_point_OBB;
pcl::PointXYZ position_OBB;
Eigen::Matrix3f rotational_matrix_OBB;
float major_value, middle_value, minor_value;
Eigen::Vector3f major_vector, middle_vector, minor_vector;
Eigen::Vector3f mass_center;

上面是 pcl::MomentOfInertiaEstimation这个类实例化的代码。

  feature_extractor.getMomentOfInertia (moment_of_inertia);
feature_extractor.getEccentricity (eccentricity);
feature_extractor.getAABB (min_point_AABB, max_point_AABB);
feature_extractor.getOBB (min_point_OBB, max_point_OBB, position_OBB, rotational_matrix_OBB);
feature_extractor.getEigenValues (major_value, middle_value, minor_value);
feature_extractor.getEigenVectors (major_vector, middle_vector, minor_vector);
feature_extractor.getMassCenter (mass_center);

上面是我们声明所有需要用来存储描述器和方形盒子的变量。

  boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));
viewer->setBackgroundColor (0, 0, 0);
viewer->addCoordinateSystem (1.0);
viewer->initCameraParameters ();
viewer->addPointCloud<pcl::PointXYZ> (cloud, "sample cloud");
viewer->addCube (min_point_AABB.x, max_point_AABB.x, min_point_AABB.y, max_point_AABB.y, min_point_AABB.z, max_point_AABB.z, 1.0, 1.0, 0.0, "AABB");

上面展示了怎么获取描述器和其它特征。

pcl::PointXYZ center (mass_center (0), mass_center (1), mass_center (2));
pcl::PointXYZ x_axis (major_vector (0) + mass_center (0), major_vector (1) + mass_center (1), major_vector (2) + mass_center (2));
pcl::PointXYZ y_axis (middle_vector (0) + mass_center (0), middle_vector (1) + mass_center (1), middle_vector (2) + mass_center (2));
pcl::PointXYZ z_axis (minor_vector (0) + mass_center (0), minor_vector (1) + mass_center (1), minor_vector (2) + mass_center (2));
viewer->addLine (center, x_axis, 1.0f, 0.0f, 0.0f, "major eigen vector");
viewer->addLine (center, y_axis, 0.0f, 1.0f, 0.0f, "middle eigen vector");
viewer->addLine (center, z_axis, 0.0f, 0.0f, 1.0f, "minor eigen vector");

上面简单的创建了PCLVisualizer这个类,并把点云和AABB加入到可视化里面。

  //Eigen::Vector3f p1 (min_point_OBB.x, min_point_OBB.y, min_point_OBB.z);
//Eigen::Vector3f p2 (min_point_OBB.x, min_point_OBB.y, max_point_OBB.z);
//Eigen::Vector3f p3 (max_point_OBB.x, min_point_OBB.y, max_point_OBB.z);
//Eigen::Vector3f p4 (max_point_OBB.x, min_point_OBB.y, min_point_OBB.z);
//Eigen::Vector3f p5 (min_point_OBB.x, max_point_OBB.y, min_point_OBB.z);
//Eigen::Vector3f p6 (min_point_OBB.x, max_point_OBB.y, max_point_OBB.z);
//Eigen::Vector3f p7 (max_point_OBB.x, max_point_OBB.y, max_point_OBB.z);
//Eigen::Vector3f p8 (max_point_OBB.x, max_point_OBB.y, min_point_OBB.z);
//p1 = rotational_matrix_OBB * p1 + position;
//p2 = rotational_matrix_OBB * p2 + position;
//p3 = rotational_matrix_OBB * p3 + position;
//p4 = rotational_matrix_OBB * p4 + position;
//p5 = rotational_matrix_OBB * p5 + position;
//p6 = rotational_matrix_OBB * p6 + position;
//p7 = rotational_matrix_OBB * p7 + position;
//p8 = rotational_matrix_OBB * p8 + position;
//pcl::PointXYZ pt1 (p1 (0), p1 (1), p1 (2));
//pcl::PointXYZ pt2 (p2 (0), p2 (1), p2 (2));
//pcl::PointXYZ pt3 (p3 (0), p3 (1), p3 (2));
//pcl::PointXYZ pt4 (p4 (0), p4 (1), p4 (2));
//pcl::PointXYZ pt5 (p5 (0), p5 (1), p5 (2));
//pcl::PointXYZ pt6 (p6 (0), p6 (1), p6 (2));
//pcl::PointXYZ pt7 (p7 (0), p7 (1), p7 (2));
//pcl::PointXYZ pt8 (p8 (0), p8 (1), p8 (2));
//viewer->addLine (pt1, pt2, 1.0, 0.0, 0.0, "1 edge");
//viewer->addLine (pt1, pt4, 1.0, 0.0, 0.0, "2 edge");
//viewer->addLine (pt1, pt5, 1.0, 0.0, 0.0, "3 edge");
//viewer->addLine (pt5, pt6, 1.0, 0.0, 0.0, "4 edge");
//viewer->addLine (pt5, pt8, 1.0, 0.0, 0.0, "5 edge");
//viewer->addLine (pt2, pt6, 1.0, 0.0, 0.0, "6 edge");
//viewer->addLine (pt6, pt7, 1.0, 0.0, 0.0, "7 edge");
//viewer->addLine (pt7, pt8, 1.0, 0.0, 0.0, "8 edge");
//viewer->addLine (pt2, pt3, 1.0, 0.0, 0.0, "9 edge");
//viewer->addLine (pt4, pt8, 1.0, 0.0, 0.0, "10 edge");
//viewer->addLine (pt3, pt4, 1.0, 0.0, 0.0, "11 edge");
//viewer->addLine (pt3, pt7, 1.0, 0.0, 0.0, "12 edge");

上面是可以用来显示特征向量的代码。

这些大量的代码展示了选择的方形盒子是怎么工作的。记住你需要旋转OBB的每一个顶点。这个代码和PCLViser::addCube()方法一样。

然后运行代码

./moment_of_inertia lamppost.pcd

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/566215.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mac os修改计算机名,如何修改Mac系统的个人用户名?

在Mac OS X中一旦建立一个用户&#xff0c;此用户的主目录的目录名将会是它的“短”名。更改登录名和主目录名从来都不简单&#xff0c;以前唯一的方法就是建立一个新用户&#xff0c;然后把所有的文件拷贝过去。Mac 修改用户是一件很悲剧的事&#xff0c;因为牵涉到很多地方的…

无线多串口服务器,多串口通信服务器

多串口通信服务器 ZLAN5G00A串口服务器是一款机架式16串口RS232/485/422和TCP/IP之间协议转化器。支持16个RS232串口、16个RS485、RS422串口&#xff0c;且RS232支持流控。通过一根网线连接到ZLAN5G00A&#xff0c;实现16个串口同时全双工工作&#xff0c;每路串口可作为TCP服务…

使用统计异常消除滤波器来消除异常

激光扫描可以生成很多点云的数据集。并且&#xff0c;测量误差会导致一些稀疏的异常值使得结果更差。这使得局部点云特征估计变得更加的复杂&#xff0c;产生一些错误的值&#xff0c;使得点云的识别失败。有些不规则的数据可以通过数理统计的方法来消除。我们稀疏异样消除是以…

为什么有的网站要改服务器才能打开吗,为什么有些网站进不了,怎样设置DNS才能进 – 手机爱问...

2006-12-24从22号起就进不了游戏。 按照官方的DNS地址也不行。 有没有广东深圳罗湖区的朋友能进的 麻烦把你们的DNS地址发给我 谢谢对于上述无法登陆游戏的玩家&#xff0c;《神泣》中国运营团队建议您尝试以下方式&#xff0c;通过修改个人电脑的DNS解析服务器地址&#xff0c…

用一个参数化的模型来投影点

这次我们将学着怎么通过一个参数化的模型进行投影。这个参数化的模型是通过一系列的系数---在这里是平面&#xff0c;相当于axbyczd0 下面是代码 #include <iostream>#include <pcl/io/pcd_io.h>#include <pcl/point_types.h>#include <pcl/ModelCoeffi…

云 文件 服务器 只存,云 文件 服务器只存

云 文件 服务器只存 内容精选换一换用户通过管理控制台创建或者导入密钥对后&#xff0c;在购买弹性云服务器时&#xff0c;登录方式选择密钥对&#xff0c;并选择创建或者导入的密钥对。用户购买弹性云服务器成功后&#xff0c;可使用密钥对的私钥登录弹性云服务器。使用的登录…

sr650服务器cpu型号,至强Gold 联想ThinkSystem SR650评测

今年7月&#xff0c;英特尔发布了至强可扩展处理器。面对新的处理器架构、新的AVX512指令集&#xff0c;需要新的服务器来匹配&#xff0c;需要更新机器&#xff0c;并提供新的软件、管理等套件。联想ThinkSystem SR650与至强可扩展处理器响应而出并被誉为“性能最高的服务器”…

使用一个环境的或者半径异样消除器来进行异样消除

这个文档显示了在滤波模型里面如何使用几个不同的方法来消除点云里面的异常。 第一步我们将使用一个环境消除滤波器来消除不满足环境条件的点云。然后我们将学会如何使用一个RadiusOutlierRemoval滤波器来消除在指定范围内没有达到指定数量邻居的点。 代码 #include <iost…

trailmakers未能连接服务器,Trailmakers联机版

《Trailmakers联机版》是一款可以联机进行的精美3D沙盒世界以创造为核心玩法的动作手游&#xff0c;这款游戏上手起来挺简单轻松的&#xff0c;诸多趣味内容&#xff0c;将让各位玩家们收获到极致的快感&#xff0c;非常的赞&#xff0c;不想错过任何欢乐与趣味的话&#xff0c…

lga775服务器cpu系列,【LGA775处理器 多的不仅是针脚】- 中关村在线

继发布新一代平台后&#xff0c;Intel推出了LGA775封装的P4处理器。这场被业界称为跨越性的技术革命&#xff0c;究竟能为用户带来什么样的变化和感受&#xff1f;它与Socket 478的处理器有何区别呢&#xff1f;● 何为LGA775LGA(Land Grid Array&#xff0c;栅格阵列封装)即So…

从深度图里面导出边界

这次我们将学着怎么从一个深度图里面导出边界。我们对3种不同种类的点很感兴趣:物体的边框的点&#xff0c;阴影边框点&#xff0c;和面纱点(在障碍物边界和阴影边界)&#xff0c;这是一个很典型的现象在通过雷达获取的3D深度。 下面是代码 /* \author Bastian Steder */#incl…

隐式形状模型

在这次我们将学会隐式形状模型算法通过pcl::ism::ImplicitShapeModel这个类来实现。这个算法是把Hough转换和特征近似包进行结合。有训练集&#xff0c;这个算法将计算一个确定的模型用来预测一个物体的中心。 这个算法由两部分组成&#xff0c;第一部分是训练&#xff0c;第二…

3D物体识别的假设检验

3D物体识别的假设验证 这次目的在于解释如何做3D物体识别通过验证模型假设在聚类里面。在描述器匹配后&#xff0c;这次我们将运行某个相关组算法在PCL里面为了聚类点对点相关性的集合&#xff0c;决定假设物体在场景里面的实例。在这个假定里面&#xff0c;全局假设验证算法将…

怎么样递增的注册成对的点云

这次我们将使用Iterative Closest Point algorithm来递增的注册一系列的点云。 这个主意来自于把所有的点云转换成第一个点云的框架&#xff0c;通过找到每个连续点云间最好的装换&#xff0c;并且计算整个点云的转换。 你的数据集应该由重新排列的&#xff0c;在一个相同的框…

qt入门

&#xfeff;&#xfeff;qt入门 1.首先我们先创建一个qt的空项目 1.这会生成两个文件 xx.pro xx.pro.user xx.pro文件是qt的工程文件&#xff0c;有点类似于vc的prj文件&#xff0c;或者sln文件。xx.pro.user是这个当前环境下的工程文件。(移植的时候这个文件没啥用) 以…

qt输入框

&#xfeff;&#xfeff;qt里面的输入框是QLineEdit这个类来实现的。 下面是代码 /* 应用程序抽象类 */ #include <QApplication>/*窗口类*/ #include <QWidget> #include <QCompleter> #include <QLineEdit>int main(int argc, char* argv[]) {QAp…

qt坐标系统与布局的简单入门

&#xfeff;&#xfeff;qt坐标系统 qt坐标系统比较简单 button.setGeometry(20,20,100,100); 上面的代码把按钮显示为父窗口的20,20处宽度为100&#xff0c;高度为100 接下去是布局 qt里面布局需要加入<QLayout.h>这个头文件。 qt里面垂直布局 qt里面的垂直布局…

qt控件基本应用

Qt里面有很多控件&#xff0c;让我们来看一些常用控件。 首先是对pro文件的配置 HEADERS \ MyWidget.h SOURCES \ MyWidget.cpp QTwidgets gui CONFIG c11 因为要用到lambda所以要加一个CONFIGc11 下面是MyWidget.h #ifndef MYWIDGET_H #define MYWIDGET_H#include &…

数据结构之算法特性及分类

数据结构之算法特性及分类 算法的特性 1.通用性。2.有效性。3.确定性4.有穷性。基本算法分类 1.穷举法顺序查找K值2.回溯,搜索八皇后&#xff0c;树和图遍历3.递归分治二分查找K值&#xff0c;快速排序&#xff0c;归并排序。4.贪心法Huffman编码树&#xff0c;最短路Dijkstra…

Python数模笔记-模拟退火算法(4)旅行商问题

1、旅行商问题(Travelling salesman problem, TSP) 旅行商问题是经典的组合优化问题&#xff0c;要求找到遍历所有城市且每个城市只访问一次的最短旅行路线&#xff0c;即对给定的正权完全图求其总权重最小的Hamilton回路&#xff1a;设有 n个城市和距离矩阵 D[dij]&#xff0…