[数据结构 -- 手撕排序算法第六篇] 递归实现快速排序(集霍尔版本,挖坑法,前后指针法为一篇的实现方法,很能打)

目录

1、常见的排序算法

1.1 交换排序基本思想

2、快速排序的实现方法

2.1 基本思想

3 hoare(霍尔)版本

3.1 实现思路

3.2 思路图解

3.3 为什么实现思路的步骤2、3不能交换

3.4 hoare版本代码实现

3.5 hoare版本代码测试

4、挖坑法

4.1 实现思路

4.2 思路图解

4.3 挖坑法代码实现

4.4 挖坑法代码测试

5、前后指针版本

5.1 实现思路

5.2 思路图解

5.3 前后指针法代码实现

5.4 前后指针法代码测试

6、时间复杂度分析

6.1 最好情况

6.2 最坏情况

7、优化快速排序

7.1 选 key 优化

7.2 小区间优化


1、常见的排序算法

1.1 交换排序基本思想

冒泡排序属于交换排序之一,我们先来了解以下冒泡排序思想。

基本思想:所谓交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置,交换排序的特点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。

2、快速排序的实现方法

递归实现与二叉树的前序遍历很相似,将区间划分为左右两半部分的常见方式有三种:1.hoare版本;2.挖坑法;3.左右指针法。

2.1 基本思想

快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中
的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右
子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止

所以,在后面很重要的一点就是,左边走找小,右边走找大。

3 hoare(霍尔)版本

3.1 实现思路

我们规定排升序,排序数组名称为a,基准值 key,基准值下标 keyi,左 left,右 right。

1.选出一个key,key可以是需要排序的数组中任意一个元素,我们本篇文章选key为a[left]

2.从数组右端(尾部)往左走,当a[right] < key(a[keyi]),right停下来;

3.然后从数组左端(首部)往右走,当a[left] > key(a[keyi]),left停下来;

4.交换a[left], a[right];

5.循环步骤2、3、4,当 left与right 走到相同位置时,交换此位置的元素与 key,key 的位置就确定了。

6.此时 key 就将数组分为了左右两个区间,我们对左右两个区间分别使用前5步,然后再次确定了左右区间的key,递归左区间,再递归右区间,就实现了排序。

注意:步骤2、3的顺序不能换。至于为什么,我们思路图解后再说。

3.2 思路图解

我们的图解就是按照实现思路来画的。

3.3 为什么实现思路的步骤2、3不能交换

我们可以看到,思路图解里,当最后找到 3 时候是 R 先走,R先遇到 3,如果是 L 先走,左找大,L 遇见 3 不会停下来,会直接走到R的位置,R 位置是 9,这时候相遇,就交换,一旦交换,左区间就不是全部小于 key(6)了,这就会出现错误。因此,key 如果选在左边,右边先走。

Q:hoare版本我们是理解了,如果key选在右边,那是不是左边先走呢?

A:答案是一定的。这里其实就是 L遇到R 还是 R遇到L 的问题。我们依然可以用上面的解法来想这问题,当L遇到R 时,说明 R 已经停下,R 停下就是 a[right]<key,这时 L遇到R,相遇位置就是小于 key 的位置,交换(key,a[left]),这时最后一个小于 key 的元素就放在了最左边,而 key 就到了确定的位置,不用再调了,以key 为中点的左区间全部小于 key,右区间全大于 key;

key在右边,当 R遇到L 时,说明 L 已经停下,L 停下就是 a[left]>key,这时 R遇到L,相遇位置就是大于 key 的位置,交换(a[left],key),这时最后一个大于 key 的元素就放在了最右边,而 key 就到了确定的位置,不用再调了,以 key 为中点的左区间全部小于 key,右区间全大于 key。

所以如果 key 选在左边,就先走右边;key 选在右边,就先走左边。

3.4 hoare版本代码实现

// 快速排序hoare版本
int PartSort1(int* a, int left, int right)
{int keyi = left;while (left < right){//右边找小while (left < right && a[right] >= a[keyi]){right--;}//左边找大while (left < right && a[left] <= a[keyi]){left++;}Swap(&a[left], &a[right]);}Swap(&a[keyi], &a[left]);return left;
}
void QuickSort(int* a, int left, int right)
{if (left >= right)return;int keyi = PartSort1(a, left, right);QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);
}
 

3.5 hoare版本代码测试

void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}
void Print(int* a, int n)
{for (int i = 0; i < n; i++){printf("%d ", a[i]);}printf("\n");
}//快速排序递归实现//快速排序hoare版本
int PartSort1(int* a, int left, int right)
{int keyi = left;while (left < right){//右边找小while (left < right && a[right] >= a[keyi]){right--;}//左边找大while (left < right && a[left] <= a[keyi]){left++;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);return left;
}
void QuickSort(int* a, int left, int right)
{if (left >= right)return;int keyi = PartSort1(a, left, right);QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);
}
void test()
{int a[] = { 6,3,2,1,5,7,9 };QuickSort(&a, 0, sizeof(a) / sizeof(int) - 1);Print(&a, sizeof(a) / sizeof(int));
}
int main()
{test();return 0;
}

4、挖坑法

4.1 实现思路

我们规定排升序,排序数组名称为a,基准值 key,左 left,右 right。

1.选出一个key,key可以是需要排序的数组中任意一个元素,我们依然选key为a[left],将a[left]交给key保存起来,被选为key的元素位置就是坑位

2.从数组右端(尾部)往左走,当a[right] < key,right停下来,将a[right]放到坑位中,坑位就换为下标为 right 的位置,此时right不动;

3.然后从数组左端(首部)往右走,当a[left] > key,left停下来,将a[left]放到坑位中,坑位就换为下标为 left 的位置,此时left不动;

4.循环步骤2、3,当 left与right 走到相同位置时,这个位置就是最后一个坑位,将key放到这个坑位中,key的最终位置就确定下来了,后面就不用再调整了。

5.此时 key 就将数组分为了左右两个区间,我们对左右两个区间分别使用前4步,然后再次确定了左右区间的key,递归左区间,再递归右区间,就实现了排序。

挖坑法与hoare版本的区别:

1.挖坑法不需要去想最后的 L与R 相遇的位置的元素要小于key,因为最终相遇位置是坑位,直接将 key 放入坑位就好了;

2.不用去想为什么选左边为 key 要右边先走,选右边为 key 要左边先走,当选左边为 key 时,因为需要填左边的坑,所以肯定是右边先走。左边找小,右边找大来理解这句话更合适。

4.2 思路图解

4.3 挖坑法代码实现

// 快速排序挖坑法
int PartSort2(int* a, int left, int right)
{int key = a[left];int hole = left;while (left < right){//右边找小while (left < right && a[right] >= key){right--;}a[hole] = a[right];hole = right;//左边找大while (left < right && a[left] <= key){left++;}a[hole] = a[left];hole = left;}a[hole] = key;return hole;
}
void QuickSort(int* a, int left, int right)
{if (left >= right)return;int keyi = PartSort2(a, left, right);QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);
}

4.4 挖坑法代码测试

void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}
void Print(int* a, int n)
{for (int i = 0; i < n; i++){printf("%d ", a[i]);}printf("\n");
}
// 快速排序挖坑法
int PartSort2(int* a, int left, int right)
{int key = a[left];int hole = left;while (left < right){//右边找小while (left < right && a[right] >= key){right--;}a[hole] = a[right];hole = right;//左边找大while (left < right && a[left] <= key){left++;}a[hole] = a[left];hole = left;}a[hole] = key;return hole;
}
void QuickSort(int* a, int left, int right)
{if (left >= right)return;int keyi = PartSort2(a, left, right);QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);
}
void test()
{int a[] = { 6,3,2,1,5,7,9 };QuickSort(&a, 0, sizeof(a) / sizeof(int) - 1);Print(&a, sizeof(a) / sizeof(int));
}
int main()
{test();return 0;
}

5、前后指针版本

5.1 实现思路

我们规定排升序,排序数组名称为a,基准值 key

1.选出一个key,key可以是需要排序的数组中任意一个元素,我们依然选key为a[left];

2.定义一个prev指针,和一个cur指针,初始化 prev 指向数组首部位置,cur 指向 prev 的下一个位置。cur先走,cur 找小于 key 的元素,找到之后停下来,让 prev++,然后交换 (a[cur], a[prev])。交换完继续往后走,cur 找的值不小于 key,cur继续往后走,找到后让 prev++,交换 (a[cur], a[prev]),不断重复此步骤;

3.当cur走完整个数组的时候,交换(a[left], a[prev]),这时key的最终位置就确定下来了。key 将数组分为左右两个子区间,左子区间小于 key,右子区间大于 key;

4.左右子区间继续重复前 3 步骤,递归下去就实现了数组的排序。

5.2 思路图解

这里不断交换其实是将小于 key 的值一直在往前抛,把大于 key 的值往后抛,cur与prev 之间的值其实就是大于 key 的所有值,不断交换就实现了最终以 key 划分的左右区间,左区间小于 key,右区间大于 key。

5.3 前后指针法代码实现

// 快速排序前后指针法
int PartSort3(int* a, int left, int right)
{int prev = left;int cur = left + 1;int keyi = left;while (cur <= right){if (a[cur] < a[keyi] && ++prev != cur){Swap(&a[prev], &a[cur]);}cur++;}Swap(&a[keyi], &a[prev]);return prev;
}
void QuickSort(int* a, int left, int right)
{if (left >= right)return;int keyi = PartSort3(a, left, right);QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);
}

5.4 前后指针法代码测试

// 快速排序前后指针法
int PartSort3(int* a, int left, int right)
{int prev = left;int cur = left + 1;int keyi = left;while (cur <= right){if (a[cur] < a[keyi] && ++prev != cur){Swap(&a[prev], &a[cur]);}cur++;}Swap(&a[keyi], &a[prev]);return prev;
}
void QuickSort(int* a, int left, int right)
{if (left >= right)return;int keyi = PartSort3(a, left, right);QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);
}
void test()
{int a[] = { 6,3,2,1,5,7,9 };QuickSort(&a, 0, sizeof(a) / sizeof(int) - 1);Print(&a, sizeof(a) / sizeof(int));
}
int main()
{test();return 0;
}

6、时间复杂度分析

6.1 最好情况

上面的三种情况下,最好情况时间复杂度是O(N* logN)

每次 key 被排到区间的中间位置,像二叉树一样要递归 logN 次,每一次的子区间排序的时间复杂度是O(N),所以最好的情况就是O(N * logN)。

6.2 最坏情况

当数组有序的时候排序,无论 key 选最左边还是最右边,时间复杂度都是O(N^2)。

7、优化快速排序

快速排序的优化有两种思想:

1.我们对选key法可以进行优化;

2.递归到小的子区间,我们可以考虑使用插入排序,也称小区间优化。

7.1 选 key 优化

选 key 优化主要是针对数组有序,或者是接近有序。

对选 key 的优化我们有两种思路:

1.随机选 key;

2.三数取中选 key。(拿出left, mid, right,在下标为这三个位置的数中选出一个中间值作为 key)。

第一种思路是不可控的,所以第二种选 key 的思路才是最合适的。

下面是三数取中的优化代码:

int GetMidIndex(int* a, int left, int right)
{int mid = (left + right) / 2;if (a[left] < a[mid]){if (a[mid] < a[right])return mid;else if (a[left] < a[right])return right;elsereturn left;}else //a[left] > a[mid]{if (a[mid] > a[right])return mid;else if (a[left] > a[right])return right;elsereturn left;}
}
int PartSort3(int* a, int left, int right)
{int midi = GetMidIndex(a, left, right);Swap(&a[left], &a[midi]);int prev = left;int cur = left + 1;int keyi = left;while (cur <= right){if (a[cur] < a[keyi] && ++prev != cur){Swap(&a[prev], &a[cur]);}cur++;}Swap(&a[prev], &a[keyi]);keyi = prev;return keyi;
}

我们取到中后,将该数字与 a[left]交换,依旧用之前的前后指针法的思路是没有问题的。霍尔版本与挖坑法是一样的优化方法。

如果我们不做三数取中的优化,当数组是有序或者接近有序的时候,时间复杂度会是最坏情况,O(N^2)。经过三数取中后,如果数组是有序的,时间复杂度仍是O(N * logN)。

7.2 小区间优化

在递归的时候,我们之前画的图中不难看到,在不断的划分的时候,到后面划分的越来越多了,当数据量特别大的时候,对栈的消耗会很大,会造成栈溢出的风险。因此,当划分到一定的程度,我们不再划分,直接选择插入排序。一般的情况下,当我们的子区间数据个数为10的时候,我们就不再递归了,直接就用插入排序。

实现代码:

// 插入排序
//时间复杂度(最坏):O(N^2) -- 逆序
//时间复杂度(最好):O(N) -- 顺序
void InsertSort(int* a, int n)
{for (int i = 0; i < n - 1; i++){int end = i;int tmp = a[i + 1];while (end >= 0){if (a[end] > tmp){a[end + 1] = a[end];end--;}else{break;}}a[end + 1] = tmp;}
}
int GetMidIndex(int* a, int left, int right)
{int mid = (left + right) / 2;if (a[left] < a[mid]){if (a[mid] < a[right])return mid;else if (a[left] < a[right])return right;elsereturn left;}else //a[left] > a[mid]{if (a[mid] > a[right])return mid;else if (a[left] > a[right])return right;elsereturn left;}
}
// 快速排序前后指针法
//[left, right]
int PartSort3(int* a, int left, int right)
{int midi = GetMidIndex(a, left, right);Swap(&a[left], &a[midi]);int prev = left;int cur = left + 1;int keyi = left;while (cur <= right){if (a[cur] < a[keyi] && ++prev != cur){Swap(&a[prev], &a[cur]);}cur++;}Swap(&a[prev], &a[keyi]);keyi = prev;return keyi;
}
void QuickSort(int* a, int left, int right)
{//子区间只有一个值,或者子区间不存在的时候递归结束if (left >= right)return;//小区间优化if (right - left + 1 < 10){InsertSort(a + left, right - left + 1);}int keyi = PartSort3(a, left, right);QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);
}

这两种优化的方式在时间空间两个方面都有一定程度的提升,但快速排序的本质没有改变,优化只是在原有的思想上锦上添花。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/5650.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【手撕排序算法】---基数排序

个人主页&#xff1a;平行线也会相交 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 平行线也会相交 原创 收录于专栏【数据结构初阶&#xff08;C实现&#xff09;】 我们直到一般的排序都是通过关键字的比较和移动这两种操作来进行排序的。 而今天介绍的…

​MySQL高阶语句(三)

目录 1、内连接 2、左连接 3、右连接&#xff1a; 二、存储过程⭐⭐⭐ 4. 调用存储过程 5.查看存储过程 5.1 查看存储过程 5.2查看指定存储过程信息 三. 存储过程的参数 3.1存储过程的参数 3.2修改存储过程 四.删除存储过程 MySQL 的连接查询&#xff0c;通常都是将来…

微服务一 实用篇 - 5.分布式搜索引擎(ElasticSearch基础)

《微服务一 实用篇 - 5.分布式搜索引擎&#xff08;ElasticSearch基础&#xff09;》 提示: 本材料只做个人学习参考,不作为系统的学习流程,请注意识别!!! 《微服务一 实用篇 - 5.分布式搜索引擎&#xff08;ElasticSearch基础&#xff09;》 《微服务一 实用篇 - 5.分布式搜索…

【广州华锐互动】列车人员疏散VR虚拟演练系统

随着科技的不断发展&#xff0c;虚拟现实(VR)技术已经逐渐应用于各个领域。在火车站安全方面&#xff0c;为了提高旅客的安全意识和应对突发事件的能力&#xff0c;列车人员疏散VR虚拟演练系统应运而生。 列车人员疏散VR虚拟演练系统是一种基于虚拟现实技术的教育培训系统&…

【Vue】day03-VueCli(脚手架)

day03 一、今日目标 1.生命周期 生命周期介绍 生命周期的四个阶段 生命周期钩子 声明周期案例 2.综合案例-小黑记账清单 列表渲染 添加/删除 饼图渲染 3.工程化开发入门 工程化开发和脚手架 项目运行流程 组件化 组件注册 4.综合案例-小兔仙首页 拆分模块-局部…

SpringBoot 如何使用 MockMvc 进行 Web 集成测试

SpringBoot 如何使用 MockMvc 进行 Web 集成测试 介绍 SpringBoot 是一个流行的 Java Web 开发框架&#xff0c;它提供了一些强大的工具和库&#xff0c;使得开发 Web 应用程序变得更加容易。其中之一是 MockMvc&#xff0c;它提供了一种测试 SpringBoot Web 应用程序的方式&…

什么是神经网络?

我们常常使用深度学习来指训练神经网络的过程。 在这里举一个房屋价格预测的例子&#xff1a;假设有一个数据集&#xff0c;它包含了六栋房子的信息。所以&#xff0c;你知道房屋的面积是多少平方米&#xff0c;并且知道这个房屋的价格。这是&#xff0c;你想要拟合一个根据房屋…

【论文阅读】DQnet: Cross-Model Detail Querying for Camouflaged Object Detection

DQnet: Cross-Model Detail Querying for Camouflaged Object Detection DQnet&#xff1a;伪装目标检测中的跨模型细节查询 论文地址&#xff1a;https://arxiv.org/abs/2212.08296 这篇文章提出了一个交叉模型框架&#xff08;CNN-Transformer并行&#xff09;来检测伪装目…

【自启动配置】Ubuntu 设置开机自启动脚本

Ubuntu 开机运行的脚本和当前操作系统运行的级别有关&#xff0c;OS 的运行级别大概分为七个 目录 1、查看 OS 运行级别 2、创建自启动脚本 3、添加软链接 1、查看 OS 运行级别 输入命令 runlevel 查看当前系统运行级别。当前系统的运行级别为 5 2、创建自启动脚本 在 /et…

实训笔记7.19

实训笔记7.19 7.19一、座右铭二、Hadoop的HDFS分布式文件存储系统的相关原理性内容2.1 HDFS上传数据的流程2.2 HDFS下载数据的流程2.3 HDFS中NameNode和SecondaryNameNode工作机制&#xff08;涉及到HDFS的元数据管理操作&#xff09;2.4 HDFS中NameNode和DataNode的工作机制&a…

小程序自定义步骤条实现

效果展示&#xff1a; 支持背景颜色自定义 <view class"hl_steps"><view class"hl_steps_item" wx:for"{{steps}}" wx:key"id"><view class"hl_steps_item_circle_out" style"background-color: {{col…

【SpringCloud Alibaba】(二)微服务环境搭建

1. 项目流程搭建 整个项目主要分为 用户微服务、商品微服务和订单微服务&#xff0c;整个过程模拟的是用户下单扣减库存的操作。这里&#xff0c;为了简化整个流程&#xff0c;将商品的库存信息保存到了商品数据表&#xff0c;同时&#xff0c;使用商品微服务来扣减库存。小伙…

「苹果安卓」手机搜狗输入法怎么调整字体大小及键盘高度?

手机搜狗输入法怎么调整字体大小及键盘高度&#xff1f; 1、在手机上准备输入文字&#xff0c;调起使用的搜狗输入法手机键盘&#xff1b; 2、点击搜狗输入法键盘左侧的图标&#xff0c;进入更多功能管理&#xff1b; 3、在搜狗输入法更多功能管理内找到定制工具栏&#xff0c…

[数据结构 -- C语言] 二叉树(BinaryTree)

目录 1、树的概念及结构 1.1 树的概念 1.2 树的相关概念&#xff08;很重要&#xff09; 1.3 树的表示 2、二叉树的概念及结构 2.1 概念 2.2 特殊二叉树 2.3 二叉树的性质&#xff08;很重要&#xff09; 2.4 练习题 2.5 二叉树的存储结构 2.5.1 顺序存储 2.5.2 链…

Jenkins报警机制的配置与Linux的使用总结

先在钉钉中添加一个机器人 在Configure System中找到机器人选项&#xff0c;并且复制webhook到网络钩子&#xff0c;然后添加机器人的编号、名称和关键词&#xff0c;然后点击测试&#xff0c;如果显示测试成功则表示配置成功&#xff0c;最后保存 再到配置中勾选顶顶机器人的定…

【CMU15-445 FALL 2022】Project #1 - Buffer Pool

About 实验官网 Project #1 - Buffer Pool在线评测网站 gradescope Lab Task #1 - Extendible Hash Table 详见——【CMU15-445 FALL 2022】Project #1 - Extendable Hashing 如果链接失效&#xff0c;请查看当前平台我之前发布的文章。 Task #2 - LRU-K Replacement Polic…

YOLOv5基础知识

定位和检测: 定位是找到检测图像中带有一个给定标签的单个目标 检测是找到图像中带有给定标签的所有目标 图像分割和目标检测的区别&#xff1a; 图像分割即为检测出物体的完整轮廓&#xff0c;而目标检测则是检测出对应的目标。&#xff08;使用框框把物体框出来&#xff…

SAP客制化区域菜单和IMG配置清单

1. 自定义区域菜单 事务代码 SE43&#xff0c;操作如下 添加菜单对象 展示效果 输入区域菜单名称并回车&#xff0c;效果如下 2. 自定义IMG配置 事务代码 SIMGH IMG structure 示例-事务代码入口 示例-表格维护入口 示例-自定义代码控制对象 需要创建dummy表并设置表维护 页面设…

Progressive Dual-Branch Network for Low-Light Image Enhancement 论文阅读笔记

这是22年中科院2区期刊的一篇有监督暗图增强的论文 网络结构如下图所示&#xff1a; ARM模块如下图所示&#xff1a; CAB模块如下图所示&#xff1a; LKA模块其实就是放进去了一些大卷积核&#xff1a; AFB模块如下图所示&#xff1a; 这些网络结构没什么特别的&#xf…

分布式光伏监控系统运维系统实时查看数据分布式光伏电站监控管理

光伏电站是一种利用太阳能发电的设施&#xff0c;随着人们对可再生能源的需求不断增加&#xff0c;光伏电站的建设也越来越普遍。但是&#xff0c;光伏电站的运营和管理需要高质量的监控系统来确保其正常运行。本文将介绍光伏电站监控系统的组成及其原理。 详细软件具体需求可…