机器学习深度学习——NLP实战(自然语言推断——微调BERT实现)

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——针对序列级和词元级应用微调BERT
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助

NLP实战(自然语言推断——微调BERT实现)

  • 引入
  • 加载预训练的BERT
  • 微调BERT的数据集
  • 微调BERT
  • 小结

引入

在之前,已经为SNLI数据集上的自然语言推断任务设计了一个基于注意力的结构,文章链接:
机器学习&&深度学习——NLP实战(自然语言推断——注意力机制实现)
现在,我们通过微调BERT来重新审视这项任务。正如上一节讨论的那样,自然语言推断是一个序列级别的文本对分类问题,而微调BERT只需要一个额外的基于多层感知机的架构,如下图所示:
在这里插入图片描述
这边将下载一个已经预训练好的小版本BERT,然后对其进行微调,一遍在SNLI数据集上进行自然语言推断。

import json
import multiprocessing
import os
import torch
from torch import nn
from d2l import torch as d2l

加载预训练的BERT

原始的BERT模型有数以亿计的参数。在下面,我们提供了两个版本的预训练BERT:“bert.base”与原始BERT基础模型一样大,需要大量计算资源才能进行微调,而“bert.small”是一个小版本,以便于演示。

d2l.DATA_HUB['bert.base'] = (d2l.DATA_URL + 'bert.base.torch.zip','225d66f04cae318b841a13d32af3acc165f253ac')
d2l.DATA_HUB['bert.small'] = (d2l.DATA_URL + 'bert.small.torch.zip','c72329e68a732bef0452e4b96a1c341c8910f81f')

两个预训练好的BERT模型都包含一个定义词表的“vocab.json”文件和一个预训练参数的“pretrained.params”文件。我们实现了以下load_pretrained_model函数来加载预先训练好的BERT参数。

def load_pretrained_model(pretrained_model, num_hiddens, ffn_num_hiddens,num_heads, num_layers, dropout, max_len, devices):data_dir = d2l.download_extract(pretrained_model)# 定义空词表以加载预定义词表vocab = d2l.Vocab()vocab.idx_to_token = json.load(open(os.path.join(data_dir,'vocab.json')))vocab.token_to_idx = {token: idx for idx, token in enumerate(vocab.idx_to_token)}bert = d2l.BERTModel(len(vocab), num_hiddens, norm_shape=[256],ffn_num_input=256, ffn_num_hiddens=ffn_num_hiddens,num_heads=4, num_layers=2, dropout=0.2,max_len=max_len, key_size=256, query_size=256,value_size=256, hid_in_features=256,mlm_in_features=256, nsp_in_features=256)# 加载预训练BERT参数bert.load_state_dict(torch.load(os.path.join(data_dir,'pretrained.params')))return bert, vocab

为了便于在大多数机器上演示,我们将在本节中加载和微调经过预训练BERT的小版本(“bert.small”)。在练习中,我们将展示如何微调大得多的“bert.base”以显著提高测试精度。

devices = d2l.try_all_gpus()
bert, vocab = load_pretrained_model('bert.small', num_hiddens=256, ffn_num_hiddens=512, num_heads=4,num_layers=2, dropout=0.1, max_len=512, devices=devices)

微调BERT的数据集

对于SNLI数据集的下游任务自然语言推断,我们定义了一个定制的数据集类SNLIBERTDataset。在每个样本中,前提和假设形成一对文本序列,并被打包成一个BERT输入序列。片段索引用于区分BERT输入序列中的前提和假设。利用预定义的BERT输入序列的最大长度(max_len),持续移除输入文本对中较长文本的最后一个标记,直到满足max_len。为了加速生成用于微调BERT的SNLI数据集,我们使用4个工作进程并行生成训练或测试样本。

class SNLIBERTDataset(torch.utils.data.Dataset):def __init__(self, dataset, max_len, vocab=None):all_premise_hypothesis_tokens = [[p_tokens, h_tokens] for p_tokens, h_tokens in zip(*[d2l.tokenize([s.lower() for s in sentences])for sentences in dataset[:2]])]self.labels = torch.tensor(dataset[2])self.vocab = vocabself.max_len = max_len(self.all_token_ids, self.all_segments,self.valid_lens) = self._preprocess(all_premise_hypothesis_tokens)print('read ' + str(len(self.all_token_ids)) + ' examples')def _preprocess(self, all_premise_hypothesis_tokens):pool = multiprocessing.Pool(4)  # 使用4个进程out = pool.map(self._mp_worker, all_premise_hypothesis_tokens)all_token_ids = [token_ids for token_ids, segments, valid_len in out]all_segments = [segments for token_ids, segments, valid_len in out]valid_lens = [valid_len for token_ids, segments, valid_len in out]return (torch.tensor(all_token_ids, dtype=torch.long),torch.tensor(all_segments, dtype=torch.long),torch.tensor(valid_lens))def _mp_worker(self, premise_hypothesis_tokens):p_tokens, h_tokens = premise_hypothesis_tokensself._truncate_pair_of_tokens(p_tokens, h_tokens)tokens, segments = d2l.get_tokens_and_segments(p_tokens, h_tokens)token_ids = self.vocab[tokens] + [self.vocab['<pad>']] \* (self.max_len - len(tokens))segments = segments + [0] * (self.max_len - len(segments))valid_len = len(tokens)return token_ids, segments, valid_lendef _truncate_pair_of_tokens(self, p_tokens, h_tokens):# 为BERT输入中的'<CLS>'、'<SEP>'和'<SEP>'词元保留位置while len(p_tokens) + len(h_tokens) > self.max_len - 3:if len(p_tokens) > len(h_tokens):p_tokens.pop()else:h_tokens.pop()def __getitem__(self, idx):return (self.all_token_ids[idx], self.all_segments[idx],self.valid_lens[idx]), self.labels[idx]def __len__(self):return len(self.all_token_ids)

读取完SNLI数据集后,我们通过实例化SNLIBERTDataset类来生成训练和测试样本。这些样本将在自然语言推断的训练和测试期间进行小批量读取。

# 如果出现显存不足错误,请减少“batch_size”。在原始的BERT模型中,max_len=512
batch_size, max_len, num_workers = 512, 128, d2l.get_dataloader_workers()
data_dir = "D:\Python\pytorch\data\snli_1.0\snli_1.0"
train_set = SNLIBERTDataset(d2l.read_snli(data_dir, True), max_len, vocab)
test_set = SNLIBERTDataset(d2l.read_snli(data_dir, False), max_len, vocab)
train_iter = torch.utils.data.DataLoader(train_set, batch_size, shuffle=True,num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(test_set, batch_size,num_workers=num_workers)

微调BERT

用于自然语言推断的微调BERT只需要一个额外的多层感知机,该多层感知机由两个全连接层组成(下面代码的self.hidden和self.output)。这个多层感知机将特殊的“<cls>”词元的BERT表示进行了转换,该词元同时编码前提和假设的信息为自然语言推断的三个输出:蕴涵、矛盾和中性。

class BERTClassifier(nn.Module):def __init__(self, bert):super(BERTClassifier, self).__init__()self.encoder = bert.encoderself.hidden = bert.hiddenself.output = nn.Linear(256, 3)def forward(self, inputs):tokens_X, segments_X, valid_lens_x = inputsencoded_X = self.encoder(tokens_X, segments_X, valid_lens_x)return self.output(self.hidden(encoded_X[:, 0, :]))

在下文中,预训练的BERT模型bert被送到用于下游应用的BERTClassifier实例net中。在BERT微调的常见实现中,只有额外的多层感知机(net.output)的输出层的参数将从零开始学习。预训练BERT编码器(net.encoder)和额外的多层感知机的隐藏层(net.hidden)的所有参数都将进行微调。

net = BERTClassifier(bert)

回想一下,在之前的文章:
机器学习&&深度学习——BERT(来自transformer的双向编码器表示)
其中,我们的MaskLM类和NextSentencePred类在其使用的多层感知机中都有一些参数。这些参数是预训练BERT模型bert中参数的一部分,因此是net中参数的一部分。然而,这些参数仅用于计算预训练过程中的遮蔽语言模型损失和下一句预测损失。这两个损失函数与微调下游应用无关,因此当BERT微调时,MaskLM和NextSentencePred中采用的多层感知机的参数不会更新(陈旧的,staled)。
为了允许具有陈旧梯度的参数,标志ignore_stale_grad=True在step函数d2l.train_batch_ch13中被设置。我们通过该函数使用SNLI的训练集(train_iter)和测试集(test_iter)对net模型进行训练和评估。

lr, num_epochs = 1e-4, 5
trainer = torch.optim.Adam(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss(reduction='none')
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,devices)

运行结果:

loss 0.520, train acc 0.790, test acc 0.779
446.5 examples/sec on [device(type=‘cpu’)]

运行图片:
在这里插入图片描述
如果计算资源允许,比如咱们去autodl平台上租借GPU以后,可以微调一个更大的预训练BERT模型,修改load_pretrained_model函数中的参数设置:将“bert.small”替换为“bert.base”,将num_hiddens=256、ffn_num_hiddens=512、num_heads=4和num_layers=2的值分别增加到768、3072、12和12。这样的测试精度应该是会高于0.86的。

小结

1、我们可以针对下游应用对预训练的BERT模型进行微调,例如在SNLI数据集上进行自然语言推断。
2、在微调过程中,BERT模型成为下游应用模型的一部分。仅与训练前损失相关的参数在微调期间不会更新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/56383.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Module not found: Error: Can‘t resolve ‘vue-pdf‘ in ‘xxx‘

使用命令npm run serve时vue项目报错&#xff1a; Module not found: Error: Cant resolve vue-pdf in xxx 解决方案&#xff1a; 运行命令&#xff1a; npm install vue-pdf --save --legacy-peer-deps 即可解决。 再次顺利执行npm run serve

Linux系统USB摄像头测试程序(四)_视频旋转及缩放

下面的程序实现了视频的旋转及缩放&#xff0c;窗口中点击鼠标左键视频向左旋转&#xff0c;点击鼠标右键视频向右旋转并且视频缩小了二分之一。程序中首先把yvyv422转换成了RGB24&#xff0c;然后利用opencv进行了旋转和缩放&#xff0c;其后用sdl2进行了渲染。使用了ffmpeg、…

问道管理:市盈率市净率两个指标含义怎么算?

市盈率和市净率是出资领域常用的两个目标&#xff0c;用于评价公司的估值和出资的报答状况。本文将从多个视点剖析这两个目标的含义和计算方法&#xff0c;帮助读者更好地了解和运用它们。首先&#xff0c;市盈率&#xff08;P/E ratio&#xff09;是用来衡量公司股票价格与每股…

程序运行的马甲:进程(1/7)

一个可执行文件被加载到内存中运行时&#xff0c;它在内存空间的分布如图所示&#xff1a; 在内存中有专门的堆栈空间&#xff0c;函数的局部变量是保存在栈中的&#xff0c;使用 malloc 申请的动态内存是在堆空间中分配的&#xff0c;它们是程序运行时比较特殊的两块内存区域&…

13.4 目标检测锚框标注 非极大值抑制

锚框的形状计算公式 假设原图的高为H,宽为W 锚框形状详细公式推导 以每个像素为中心生成不同形状的锚框 # s是缩放比&#xff0c;ratio是宽高比 def multibox_prior(data, sizes, ratios):"""生成以每个像素为中心具有不同形状的锚框"""in_he…

后端Windows软件环境安装配置大全[JDK、Redis、RedisDesktopManager、Mysql、navicat、VMWare、finalshell、MongoDB...持续更新中]

文章目录 前言1. 安装 JDK2. 安装 Redis3. 安装 RedisDesktopManager&#xff08;Redis可视化工具&#xff09;4. 安装 Mysql5. 安装 navicat (Mysql可视化工具)6. 安装 VMWare7. 安装 finalshell (VMWare可视化工具)8. 安装 MongodDB9. 安装 maven 总结 前言 为了巩固所学的知…

Web安全测试(三):SQL注入漏洞

一、前言 结合内部资料&#xff0c;与安全渗透部门同事合力整理的安全测试相关资料教程&#xff0c;全方位涵盖电商、支付、金融、网络、数据库等领域的安全测试&#xff0c;覆盖Web、APP、中间件、内外网、Linux、Windows多个平台。学完后一定能成为安全大佬&#xff01; 全部…

WSL2 window上高效运行Linux

1 WSL及优势 1.1 WSL简介 WSL&#xff08;Windows Subsystem for Linux&#xff09;是Windows操作系统中的一个功能&#xff0c;它允许用户在Windows环境下运行Linux应用程序。WSL提供了一个与Linux内核兼容的系统调用转发层&#xff0c;使得Linux二进制文件可以在Windows上直…

基于风险的漏洞管理

基于风险的漏洞管理涉及对即将被利用的漏洞的分类响应&#xff0c;如果被利用&#xff0c;可能会导致严重后果。本文详细介绍了确定漏洞优先级时要考虑的关键风险因素&#xff0c;以及确保基于风险的漏洞管理成功的其他注意事项。 什么是基于风险的漏洞管理对基于风险的漏洞管…

vue中html引入使用<%= BASE_URL %>变量

首先使用src相对路径引入 注意&#xff1a; js 文件放在public文件下 不要放在assets静态资源文件下 否则 可能会报错 GET http://192.168.0.113:8080/src/assets/js/websockets.js net::ERR_ABORTED 500 (Internal Server Error) 正确使用如下&#xff1a;eg // html中引…

(线特征)opencv+opencv contribute 配置

写一篇博客&#xff0c;记录开始线特征slam的历程。 在配置环境的时候&#xff0c;可以发现大多数都是用到了opencv3.4.16和其contribute版本&#xff0c;这里进行一个相关操作的教学。配置环境是在Ubuntu下面进行的&#xff0c;建议使用Ubuntu18来进行线特征的配置以及代码的…

国产AI芯片突破,芯片或成白菜价,恐惧的美芯阻止台积电为它代工

日前消息指台积电大幅减少一家中国AI芯片企业的产能&#xff0c;原因在于国产AI芯片的性能已接近美芯&#xff0c;美国芯片企业NVIDIA与相关的资本机构贝莱德联手施压台积电所致&#xff0c;凸显出美国芯片忧虑中国AI芯片的竞争力。 这家国产AI芯片企业为壁仞科技&#xff0c;据…

【精算研究01/10】 计量经济学的性质和范围

一、说明 计量经济学是使用统计方法来发展理论或测试经济学或金融学中的现有假设。计量经济学依赖于回归模型和零假设检验等技术。计量经济学也可以用来预测未来的经济或金融趋势。 图片来源&#xff1a;https://marketbusinessnews.com 二、 计量经济之简介 计量经济学是对经济…

Spring MVC 学习总结

学习目标 了解 Spring MVC 是什么&#xff0c;为什么要使用它或者说它能解决什么问题&#xff0c;其与 Spring 是什么关系。理解为什么配置 Spring MVC 的前端控制器的映射路径为 “/” 会导致静态资源访问不了&#xff0c;掌握怎么处理这个问题。掌握基于注解方式使用 Spring…

有哪些前端调试和测试工具? - 易智编译EaseEditing

前端开发调试和测试工具帮助开发人员在开发过程中发现和修复问题&#xff0c;确保网站或应用的稳定性和性能。以下是一些常用的前端调试和测试工具&#xff1a; 调试工具&#xff1a; 浏览器开发者工具&#xff1a; 现代浏览器&#xff08;如Chrome、Firefox、Safari等&#…

深度学习2.神经网络、机器学习、人工智能

目录 深度学习、神经网络、机器学习、人工智能的关系 大白话解释深度学习 传统机器学习 VS 深度学习 深度学习的优缺点 4种典型的深度学习算法 卷积神经网络 – CNN 循环神经网络 – RNN 生成对抗网络 – GANs 深度强化学习 – RL 总结 深度学习 深度学习、神经网络…

Hbase-技术文档-java.net.UnknownHostException: 不知道这样的主机。 (e64682f1b276)

问题描述&#xff1a; 在使用spring-boot操作habse的时候&#xff0c;在对habse进行操作的时候出现这个问题。。 报错信息如下&#xff1a; 第一段报错&#xff1a; 第二段报错&#xff1a; java.net.UnknownHostException: e64682f1b276 问题定位解读&#xff1a; 错误 ja…

Android 13 - Media框架(7)- NuPlayer::Source

Source 在播放器中起着拉流&#xff08;Streaming&#xff09;和解复用&#xff08;demux&#xff09;的作用&#xff0c;Source 设计的好坏直接影响到播放器的基础功能&#xff0c;我们这一节将会了解 NuPlayer 中的通用 Source&#xff08;GenericSource&#xff09;关注本地…

Nginx配置文件详解

Nginx配置文件详解 1、Nginx配置文件1.1主配置文件详解1.2子配置文件 2、全局配置部分2.1修改启动的工作进程数&#xff08;worker process) 优化2.2cpu与worker process绑定2.3 PID 路径修改2.4 修改工作进程的优先级2.5调试工作进程打开的文件的个数2.6关闭master-worker工作…

postman接口自动化测试框架实战!

什么是自动化测试 把人对软件的测试行为转化为由机器执行测试行为的一种实践。 例如GUI自动化测试&#xff0c;模拟人去操作软件界面&#xff0c;把人从简单重复的劳动中解放出来。 本质是用代码去测试另一段代码&#xff0c;属于一种软件开发工作&#xff0c;已经开发完成的用…