排序千万级数据_MySQL 对于千万级的大表要怎么优化?我写了6000字的深度解读...

e668ff9bf8474d1fee28fe95c962af0a.png

千万级大表如何优化,这是一个很有技术含量的问题,通常我们的直觉思维都会跳转到拆分或者数据分区,在此我想做一些补充和梳理,想和大家做一些这方面的经验总结,也欢迎大家提出建议。

从一开始脑海里开始也是火光四现,到不断的自我批评,后来也参考了一些团队的经验,我整理了下面的大纲内容。

6eeff933582baba971ca6903125fa15f.png

既然要吃透这个问题,我们势必要回到本源,我把这个问题分为三部分:

“千万级”,“大表”,“优化”,

也分别对应我们在图中标识的

“数据量”,“对象”和“目标”。

我来逐步展开说明一下,从而给出一系列的解决方案。

1.数据量:千万级

千万级其实只是一个感官的数字,就是我们印象中的数据量大。 这里我们需要把这个概念细化,因为随着业务和时间的变化,数据量也会有变化,我们应该是带着一种动态思维来审视这个指标,从而对于不同的场景我们应该有不同的处理策略。

1) 数据量为千万级,可能达到亿级或者更高

通常是一些数据流水,日志记录的业务,里面的数据随着时间的增长会逐步增多,超过千万门槛是很容易的一件事情。

2) 数据量为千万级,是一个相对稳定的数据量

如果数据量相对稳定,通常是在一些偏向于状态的数据,比如有1000万用户,那么这些用户的信息在表中都有相应的一行数据记录,随着业务的增长,这个量级相对是比较稳定的。

3) 数据量为千万级,不应该有这么多的数据

这种情况是我们被动发现的居多,通常发现的时候已经晚了,比如你看到一个配置表,数据量上千万;或者说一些表里的数据已经存储了很久,99%的数据都属于过期数据或者垃圾数据。

数据量是一个整体的认识,我们需要对数据做更近一层的理解,这就可以引出第二个部分的内容。

2.对象:数据表

数据操作的过程就好比数据库中存在着多条管道,这些管道中都流淌着要处理的数据,这些数据的用处和归属是不一样的。

一般根据业务类型把数据分为三种:

(1)流水型数据

流水型数据是无状态的,多笔业务之间没有关联,每次业务过来的时候都会产生新的单据,比如交易流水、支付流水,只要能插入新单据就能完成业务,特点是后面的数据不依赖前面的数据,所有的数据按时间流水进入数据库。

(2)状态型数据

状态型数据是有状态的,多笔业务之间依赖于有状态的数据,而且要保证该数据的准确性,比如充值时必须要拿到原来的余额,才能支付成功。

(3)配置型数据

此类型数据数据量较小,而且结构简单,一般为静态数据,变化频率很低。

至此,我们可以对整体的背景有一个认识了,如果要做优化,其实要面对的是这样的3*3的矩阵,如果要考虑表的读写比例(读多写少,读少写多...),那么就会是3*3*4=24种,显然做穷举是不显示的,而且也完全没有必要,可以针对不同的数据存储特性和业务特点来指定不同的业务策略。

对此我们采取抓住重点的方式,把常见的一些优化思路梳理出来,尤其是里面的核心思想,也是我们整个优化设计的一把尺子,而难度决定了我们做这件事情的动力和风险。

36ff7e9d8a1bf6ba2f3a6a7ff77ba1f7.png

而对于优化方案,我想采用面向业务的维度来进行阐述。

3.目标:优化

在这个阶段,我们要说优化的方案了,总结的有点多,相对来说是比较全了。

整体分为五个部分:

9acdd439eab6da707f87136609e77163.png

其实我们通常所说的分库分表等方案只是其中的一小部分,如果展开之后就比较丰富了。

3ccf9c25a7e6f8b7b298396d9f345e12.png

其实不难理解,我们要支撑的表数据量是千万级别,相对来说是比较大了,DBA要维护的表肯定不止一张,如何能够更好的管理,同时在业务发展中能够支撑扩展,同时保证性能,这是摆在我们面前的几座大山。

我们分别来说一下这五类改进方案:

优化设计方案1.规范设计

在此我们先提到的是规范设计,而不是其他高大上的设计方案。

黑格尔说:秩序是自由的第一条件。在分工协作的工作场景中尤其重要,否则团队之间互相牵制太多,问题多多。

规范设计我想提到如下的几个规范,其实只是属于开发规范的一部分内容,可以作为参考。

be05c724b3186d234f6fe3e06e3cfa2e.png

规范的本质不是解决问题,而是有效杜绝一些潜在问题,对于千万级大表要遵守的规范,我梳理了如下的一些细则,基本可以涵盖我们常见的一些设计和使用问题,比如表的字段设计不管三七二十一,都是varchar(500),其实是很不规范的一种实现方式,我们来展开说一下这几个规范。

1)配置规范

(1)MySQL数据库默认使用InnoDB存储引擎。

(2)保证字符集设置统一,MySQL数据库相关系统、数据库、表的字符集使都用UTF8,应用程序连接、展示等可以设置字符集的地方也都统一设置为UTF8字符集。

注:UTF8格式是存储不了表情类数据,需要使用UTF8MB4,可在MySQL字符集里面设置。在8.0中已经默认为UTF8MB4,可以根据公司的业务情况进行统一或者定制化设置。

(3)MySQL数据库的事务隔离级别默认为RR(Repeatable-Read),建议初始化时统一设置为RC(Read-Committed),对于OLTP业务更适合。

(4)数据库中的表要合理规划,控制单表数据量,对于MySQL数据库来说,建议单表记录数控制在2000W以内。

(5)MySQL实例下,数据库、表数量尽可能少;数据库一般不超过50个,每个数据库下,数据表数量一般不超过500个(包括分区表)。

2)建表规范

(1)InnoDB禁止使用外键约束,可以通过程序层面保证。

(2)存储精确浮点数必须使用DECIMAL替代FLOAT和DOUBLE。

(3)整型定义中无需定义显示宽度,比如:使用INT,而不是INT(4)。

(4)不建议使用ENUM类型,可使用TINYINT来代替。

(5)尽可能不使用TEXT、BLOB类型,如果必须使用,建议将过大字段或是不常用的描述型较大字段拆分到其他表中;另外,禁止用数据库存储图片或文件。

(6)存储年时使用YEAR(4),不使用YEAR(2)。

(7)建议字段定义为NOT NULL。

(8)建议DBA提供SQL审核工具,建表规范性需要通过审核工具审核后

3)命名规范

(1)库、表、字段全部采用小写。

(2)库名、表名、字段名、索引名称均使用小写字母,并以“_”分割。

(3)库名、表名、字段名建议不超过12个字符。(库名、表名、字段名支持最多64个字符,但为了统一规范、易于辨识以及减少传输量,统一不超过12字符)

(4)库名、表名、字段名见名知意,不需要添加注释。

对于对象命名规范的一个简要总结如下表4-1所示,供参考。

6460779c8fe10d51b94f2b86bd798a7e.png

4)索引规范

(1)索引建议命名规则:idx_col1_col2[_colN]、uniq_col1_col2[_colN](如果字段过长建议采用缩写)。

(2)索引中的字段数建议不超过5个。

(3)单张表的索引个数控制在5个以内。

(4)InnoDB表一般都建议有主键列,尤其在高可用集群方案中是作为必须项的。

(5)建立复合索引时,优先将选择性高的字段放在前面。

(6)UPDATE、DELETE语句需要根据WHERE条件添加索引。

(7)不建议使用%前缀模糊查询,例如LIKE “%weibo”,无法用到索引,会导致全表扫描。

(8)合理利用覆盖索引,例如:

(9)SELECT email,uid FROM user_email WHERE uid=xx,如果uid不是主键,可以创建覆盖索引idx_uid_email(uid,email)来提高查询效率。

(10)避免在索引字段上使用函数,否则会导致查询时索引失效。

(11)确认索引是否需要变更时要联系DBA。

5)应用规范

(1)避免使用存储过程、触发器、自定义函数等,容易将业务逻辑和DB耦合在一起,后期做分布式方案时会成为瓶颈。

(2)考虑使用UNION ALL,减少使用UNION,因为UNION ALL不去重,而少了排序操作,速度相对比UNION要快,如果没有去重的需求,优先使用UNION ALL。

(3)考虑使用limit N,少用limit M,N,特别是大表或M比较大的时候。

(4)减少或避免排序,如:group by语句中如果不需要排序,可以增加order by null。

(5)统计表中记录数时使用COUNT(*),而不是COUNT(primary_key)和COUNT(1);InnoDB表避免使用COUNT(*)操作,计数统计实时要求较强可以使用Memcache或者Redis,非实时统计可以使用单独统计表,定时更新。

(6)做字段变更操作(modify column/change column)的时候必须加上原有的注释属性,否则修改后,注释会丢失。

(7)使用prepared statement可以提高性能并且避免SQL注入。

(8)SQL语句中IN包含的值不应过多。

(9)UPDATE、DELETE语句一定要有明确的WHERE条件。

(10)WHERE条件中的字段值需要符合该字段的数据类型,避免MySQL进行隐式类型转化。

(11)SELECT、INSERT语句必须显式的指明字段名称,禁止使用SELECT * 或是INSERT INTO table_name values()。

(12)INSERT语句使用batch提交(INSERT INTO table_name VALUES(),(),()……),values的个数不应过多。

优化设计方案2:业务层优化

业务层优化应该是收益最高的优化方式了,而且对于业务层完全可见,主要有业务拆分,数据拆分和两类常见的优化场景(读多写少,读少写多)

b3b9c449c546a28e2ab384d2c58ebb1e.png

1)业务拆分

ü 将混合业务拆分为独立业务

ü 将状态和历史数据分离

业务拆分其实是把一个混合的业务剥离成为更加清晰的独立业务,这样业务1,业务2。。。独立的业务使得业务总量依旧很大,但是每个部分都是相对独立的,可靠性依然有保证。

对于状态和历史数据分离,我可以举一个例子来说明。

例如:我们有一张表Account,假设用户余额为100。

eccdac9087972cc113dfd0a450a48246.png

我们需要在发生数据变更后,能够追溯数据变更的历史信息,如果对账户更新状态数据,增加100的余额,这样余额为200。

这个过程可能对应一条update语句,一条insert语句。

对此我们可以改造为两个不同的数据源,account和account_hist

在account_hist中就会是两条insert记录,如下:

ec6b170adac89d388ab5a51c9fc5c20d.png

而在account中则是一条update语句,如下:

440006a4022c5044cc4a2aac25741b27.png

这也是一种很基础的冷热分离,可以大大减少维护的复杂度,提高业务响应效率。

2)数据拆分

2.1 按照日期拆分,这种使用方式比较普遍,尤其是按照日期维度的拆分,其实在程序层面的改动很小,但是扩展性方面的收益很大。

  • 数据按照日期维度拆分,如test_20191021
  • 数据按照周月为维度拆分,如test_201910
  • 数据按照季度,年维度拆分,如test_2019

2.2 采用分区模式,分区模式也是常见的使用方式,采用hash,range等方式会多一些,在MySQL中我是不大建议使用分区表的使用方式,因为随着存储容量的增长,数据虽然做了垂直拆分,但是归根结底,数据其实难以实现水平扩展,在MySQL中是有更好的扩展方式。

2.3 读多写少优化场景

采用缓存,采用Redis技术,将读请求打在缓存层面,这样可以大大降低MySQL层面的热点数据查询压力。

2.4 读少写多优化场景,可以采用三步走:

1) 采用异步提交模式,异步对于应用层来说最直观的就是性能的提升,产生最少的同步等待。

2) 使用队列技术,大量的写请求可以通过队列的方式来进行扩展,实现批量的数据写入。

3) 降低写入频率,这个比较难理解,我举个例子

对于业务数据,比如积分类,相比于金额来说业务优先级略低的场景,如果数据的更新过于频繁,可以适度调整数据更新的范围(比如从原来的每分钟调整为10分钟)来减少更新的频率。

例如:更新状态数据,积分为200,如下图所示

77bdc1ffcf6e95585c209c6768fbcc32.png

可以改造为,如下图所示。

eea568c947f9e7b1ffc988395abf814a.png

如果业务数据在短时间内更新过于频繁,比如1分钟更新100次,积分从100到10000,则可以根据时间频率批量提交。

例如:更新状态数据,积分为100,如下图所示。

5730db550b53c07a1579f706ffb34344.png

无需生成100个事务(200条SQL语句)可以改造为2条SQL语句,如下图所示。

e539ad6249309f7803d495d45a8adb20.png

对于业务指标,比如更新频率细节信息,可以根据具体业务场景来讨论决定。

优化设计方案3:架构层优化

架构层优化其实就是我们认为的那种技术含量很高的工作,我们需要根据业务场景在架构层面引入一些新的花样来。

2c0af6ee520be5a3a16ed8c00e90a5c6.png

3.1.系统水平扩展场景

3.1.1采用中间件技术,可以实现数据路由,水平扩展,常见的中间件有MyCAT,ShardingSphere,ProxySQL等

11a3df4b5124d2db9359b6049782fb40.png

3.1.2 采用读写分离技术,这是针对读需求的扩展,更侧重于状态表,在允许一定延迟的情况下,可以采用多副本的模式实现读需求的水平扩展,也可以采用中间件来实现,如MyCAT,ProxySQL,MaxScale,MySQL Router等

c5a9954da4dc1af911b064dac60a3f0d.png

3.1.3 采用负载均衡技术,常见的有LVS技术或者基于域名服务的Consul技术等

3.2.兼顾OLTP+OLAP的业务场景,可以采用NewSQL,优先兼容MySQL协议的HTAP技术栈,如TiDB

3.3.离线统计的业务场景,有几类方案可供选择。

3.3.1 采用NoSQL体系,主要有两类,一类是适合兼容MySQL协议的数据仓库体系,常见的有Infobright或者ColumnStore,另外一类是基于列式存储,属于异构方向,如HBase技术

3.3.2 采用数仓体系,基于MPP架构,如使用Greenplum统计,如T+1统计

优化设计方案4:数据库优化

数据库优化,其实可打的牌也不少,但是相对来说空间没有那么大了,我们来逐个说一下。

65e8f27f2cd5cd16e5e0c52b221c078f.png

4.1 事务优化

根据业务场景选择事务模型,是否是强事务依赖

对于事务降维策略,我们来举出几个小例子来。

4.1.1 降维策略1:存储过程调用转换为透明的SQL调用

对于新业务而言,使用存储过程显然不是一个好主意,MySQL的存储过程和其他商业数据库相比,功能和性能都有待验证,而且在目前轻量化的业务处理中,存储过程的处理方式太“重”了。

有些应用架构看起来是按照分布式部署的,但在数据库层的调用方式是基于存储过程,因为存储过程封装了大量的逻辑,难以调试,而且移植性不高,这样业务逻辑和性能压力都在数据库层面了,使得数据库层很容易成为瓶颈,而且难以实现真正的分布式。

所以有一个明确的改进方向就是对于存储过程的改造,把它改造为SQL调用的方式,可以极大地提高业务的处理效率,在数据库的接口调用上足够简单而且清晰可控。

4.1.2 降维策略2:DDL操作转换为DML操作

有些业务经常会有一种紧急需求,总是需要给一个表添加字段,搞得DBA和业务同学都挺累,可以想象一个表有上百个字段,而且基本都是name1,name2……name100,这种设计本身就是有问题的,更不用考虑性能了。究其原因,是因为业务的需求动态变化,比如一个游戏装备有20个属性,可能过了一个月之后就增加到了40个属性,这样一来,所有的装备都有40个属性,不管用没用到,而且这种方式也存在诸多的冗余。

我们在设计规范里面也提到了一些设计的基本要素,在这些基础上需要补充的是,保持有限的字段,如果要实现这些功能的扩展,其实完全可以通过配置化的方式来实现,比如把一些动态添加的字段转换为一些配置信息。配置信息可以通过DML的方式进行修改和补充,对于数据入口也可以更加动态、易扩展。

4.1.3 降维策略3:Delete操作转换为高效操作

有些业务需要定期来清理一些周期性数据,比如表里的数据只保留一个月,那么超出时间范围的数据就要清理掉了,而如果表的量级比较大的情况下,这种Delete操作的代价实在太高,我们可以有两类解决方案来把Delete操作转换为更为高效的方式。

第一种是根据业务建立周期表,比如按照月表、周表、日表等维度来设计,这样数据的清理就是一个相对可控而且高效的方式了。

第二种方案是使用MySQL rename的操作方式,比如一张2千万的大表要清理99%的数据,那么需要保留的1%的数据我们可以很快根据条件过滤补录,实现“移形换位”。

4.2 SQL优化

其实相对来说需要的极简的设计,很多点都在规范设计里面了,如果遵守规范,八九不离十的问题都会杜绝掉,在此补充几点:

4.2.1 SQL语句简化,简化是SQL优化的一大利器,因为简单,所以优越。

4.2.2 尽可能避免或者杜绝多表复杂关联,大表关联是大表处理的噩梦,一旦打开了这个口子,越来越多的需求需要关联,性能优化就没有回头路了,更何况大表关联是MySQL的弱项,尽管Hash Join才推出,不要像掌握了绝对大杀器一样,在商业数据库中早就存在,问题照样层出不穷。

4.2.3 SQL中尽可能避免反连接,避免半连接,这是优化器做得薄弱的一方面,什么是反连接,半连接?其实比较好理解,举个例子,not in ,not exists就是反连接,in,exists就是半连接,在千万级大表中出现这种问题,性能是几个数量级的差异。

4.3 索引优化

应该是大表优化中需要把握的一个度。

4.3.1 首先必须有主键,规范设计中第一条就是,此处不接收反驳。

4.3.2 其次,SQL查询基于索引或者唯一性索引,使得查询模型尽可能简单。

4.3.3 最后,尽可能杜绝范围数据的查询,范围扫描在千万级大表情况下还是尽可能减少。

优化设计方案4:管理优化

这部分应该是在所有的解决方案中最容易被忽视的部分了,我放在最后,在此也向运维同事致敬,总是为很多认为本应该正常的问题尽职尽责(背锅)。

8fc2fe06c99a589071061a82226c7444.png

千万级大表的数据清理一般来说是比较耗时的,在此建议在设计中需要完善冷热数据分离的策略,可能听起来比较拗口,我来举一个例子,把大表的Drop 操作转换为可逆的DDL操作。

Drop操作是默认提交的,而且是不可逆的,在数据库操作中都是跑路的代名词,MySQL层面目前没有相应的Drop操作恢复功能,除非通过备份来恢复,但是我们可以考虑将Drop操作转换为一种可逆的DDL操作。

MySQL中默认每个表有一个对应的ibd文件,其实可以把Drop操作转换为一个rename操作,即把文件从testdb迁移到testdb_arch下面;从权限上来说,testdb_arch是业务不可见的,rename操作可以平滑的实现这个删除功能,如果在一定时间后确认可以清理,则数据清理对于已有的业务流程是不可见的,如下图所示。

e7d360c6f1dd2044088fda16f7172adc.png

此外,还有两个额外建议,一个是对于大表变更,尽可能考虑低峰时段的在线变更,比如使用pt-osc工具或者是维护时段的变更,就不再赘述了。

最后总结一下,其实就是一句话:

千万级大表的优化是根据业务场景,以成本为代价进行优化的,绝对不是孤立的一个层面的优化

个人新书 《MySQL DBA工作笔记》

个人公众号:jianrong-notes

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/563313.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java读取rvt文件数据_Revit二次开发之隐藏API 独立进程读取rvt文件

在项目中需要读取rvt文件,但是因为该格式为非公开格式,其数据需要revit的支持,但批量读取不可能一个一个用revit软件去打开。不过该方法还是需要revit的依赖,速度比开软件快了知道多少1.1. 新建一个控制台项目1.2. 添加Revit API引…

java类快速构造_程序员有什么办法能快速梳理java知识点?有这八张图就够了

一图胜千言,下面图解均来自Program Creek 网站的Java教程,目前它们拥有最多的票选。如果图解没有阐明问题,那么你可以借助它的标题来一窥究竟。1、字符串不变性下面这张图展示了这段代码做了什么String s "abcd";s s.concat(&quo…

uos配置 java 环境变量_CentOS 7.3 环境配置java和tomcat开机启动

Centos7下添加开机自启动服务和脚本 https://blog.csdn.net/GMingZhou/article/details/78677953安装部分参考我的博文,仅参考他的开机启动部分CentOS 7环境配置tomcat7开机启动 https://blog.csdn.net/tiantang_1986/article/details/537049661.安装 jdk-8u5-lin…

react全局方法_前端面试题 ---react

高阶组件相关什么是高阶组件,它有哪些运用?高阶组件就是一个函数,接收一个组件,经过处理后返回后的新的组件;高阶组件,不是真正意义上的组件,其实是一种模式;可以对逻辑代码进行抽离…

get方法请求返回一个文件_一键转换多种文件格式,完全免费,总有一个方法适合你...

相信各位小伙伴平时办公的时候,肯定经常需要对多种文件格式进行转换,但是下面这些非常好用的转换方法,你用过吗?接下来就带各位一探究竟,希望可以帮到你哦!一、迅捷PDF转换器在线版1、文档转换首先我们可以…

jacoco入门_Android jacoco 代码覆盖率测试入门

前言最近同事搞了一个基于 jacoco 统计 Android 代码覆盖率测试的功能,可以统计每天手工测试的代码覆盖率.抱着好奇的心态,自己也学习一下 jacoco,陆陆续续搞了三天终于有点结果了.本文介绍仅仅在源码中加入少量代码就可以完成代码覆盖率覆测试.代码配置build.gradle在 app 目录…

uinty粒子系统子物体变大_Unity的粒子系统(一)基础篇

简介闲来无事,仔细的学习一下粒子系统,也当是给自己做个笔记方便之后进行回顾。引擎版本:Unity2018.3创建一个ParticleSystem创建方式:1、Hierarchy-->Effects-->ParticleSystem第一种创建方式创建结果2、gameObject-->A…

java定义返回码常量_码出规范(四)常量定义

01各位屏幕前的读者朋友大家早上中午晚上凌晨好,本文是《码出规范》专题的第四篇,文中参考阿里巴巴最新发布的《Java开发手册》,结合《springboot2.x独门秘籍》专题中的项目开发进度,学以致用,让你在开发中码出高效&am…

centos下载mysql_python数据分析之路——centos下载并配置mysql与navicat的使用

python数据分析之路——centos下载并配置mysql与navicat的使用在之前的文章中已经说明了如何购买并配置一台自己的服务器,那么在安装完anaconda之后,为了之后方便用Django进行网站开发与数据分析,需要对数据库进行配置,那么在数据…

mysql 解压缩安装_[mysql] MySQL解压缩安装步骤

以前装的MySQL出问题了,只好卸载了。又下载了一个mysql-5.6.24-win32.1432006610.zip。msi文件直接安装就行了。这里需要解压到指定目录,配置后可使用。环境变量配置:在 mysql根目录下修改 my-default.ini :# These are commonly set, remove…

mysql数据库如何创建表_mysql数据库如何创建数据表

mysql数据库创建数据表的方法是:可以通过CREATE TABLE语句来创建,基本语法:【CREATE TABLE ([表定义选项])[表选项][分区选项];】。要注意的是,创建数据表不能使用SQL语言中的关键字。在 MySQL 中,可以使用 CREATE TAB…

mysql 主从一致性_mysql 主从一致性保证

MySQL 主备的基本原理MySQL 主备切换流程.png主备同步流程图备库 B 跟主库 A 之间维持了一个长连接。主库 A 内部有一个线程,专门用于服务备库 B 的这个长连接。一个事务日志同步的完整过程是这样的:在备库 B 上通过 change master 命令,设置…

php study是什么,phpstudy与wamp区别的区别是什么?

phpstudyphpstudy是一个php运行环境的集成包,用户不需要去配置运行环境,就可以使用,phpstudy不仅是一款比较好用的php调试环境工具,并且还包括了开发工具和常用手册,对于新手是有很大帮助的。phpstudy集成最新的Apache…

java全局机制,java实现全局异常机制

先上自己的代码,后整理下原理知识。下面是自己实现的全局异常机制1.继承Exception,自定义异常类​package com.zichen.xhkq.exception;/**** Title: CustomException* Description: 系统自定义的异常类型,实际开发中可能要定义多种异常类型* authorCNZZ*…

mysql crash定位分析_MySQL实例crash的案例详细分析

【问题描述】我们生产环境有一组集群的多台MySQL服务器(MySQL 5.6.21),不定期的会crash,但error log中只记录了重启信息,未记录crash时的堆栈:mysqld_safe Number of processes running now: 0mysqld_safe mysqld restarted接下来…

matlab 读取照片imread,利用matlab读取图像

怎样用matlab读取20张图片并依次展示出来指定路径下 单个文件夹data中所有图像 P .\data\;% 图像文件夹路径 img_path_list dir(strcat(P,*.jpg));%获取该文件夹中所有jpg格式的图像 N length(img_path_list);%获取图像总数量 for j 1:N%逐一读取图像 image_name img_path…

python元素定位input button_python+selenium 定位到元素,无法点击的解决方法

报错selenium.common.exceptions.WebDriverException: Message: Element is not clickable at point (234.75, 22). Other element would receive the click: 需要点击的按钮页面显示不了,需要下拉滚动条,能看到按钮了才能点1、尝试下拉一段滚动条&#…

python模拟浏览器请求的库_基于Python模拟浏览器发送http请求

1.使用 urllib2 实现#! /usr/bin/env python# -*- codingutf-8 -*-import urllib2url"https://www.baidu.com"req_header {"User-Agent":"Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11&…

owncloud8 php,owncloud-8.2.3

安装依赖Red Hat Enterprise Linux and CentOS 6 still ship with PHP 5.3. ownCloud requires PHP 5.4 or better. There areseveral third-party repositories that supply PHP 5.4, but you must use the Software Collections (SCL) repository to bein compliance with yo…

php7 提示500错误解决,升级php7出现500错误怎么办

升级php7出现500错误怎么办发布时间:2020-08-24 10:40:45来源:亿速云阅读:69作者:小新小编给大家分享一下升级php7出现500错误怎么办,希望大家阅读完这篇文章后大所收获,下面让我们一起去探讨吧&#xff01…