深入学习二叉树(四) 二叉排序树
1 前言
数据结构中,线性表分为无序线性表和有序线性表。
无序线性表的数据是杂乱无序的,所以在插入和删除时,没有什么必须遵守的规则,可以插入在数据尾部或者删除在数据尾部。但是在查找的时候,需要遍历整个数据表,导致无序线性表的查找效率低。
有序线性表的数据则相反,查找数据时的时候因为数据是有序的,可以用二分法、插值法、斐波那契查找法来实现。但是,当进行插入和删除操作时,需要维护表中数据的有序性,会耗费大量的时间。
那么,我们希望找到一种数据结构,既可以有较高的插入和删除效率,并且具备较高的查找效率,因此,二叉排序树应运而生。
2 二叉排序树
2.1 定义
二叉排序树(Binary Sort Tree),又称二叉查找树(Binary Search Tree),也称二叉搜索树。二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:
(1)若左子树不空,则左子树上所有结点的值均小于或等于它的根结点的值;
(2)若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;
(3)左、右子树也分别为二叉排序树;
2.2 构造一棵二叉排序树
现有序列:61 87 59 47 35 73 51 98 37 93
构造过程如下:
1)索引 i = 0,A[i] = 61,结点61作为根结点,如图2.1:
2)索引 i = 1,A[1] = 87, 87 > 61,且结点61右孩子为空,故81为61结点的右孩子,如图2.2:
3)索引 i = 2,A[i] = 59,59 <61,且结点61左孩子为空,故59为61结点的左孩子,如图2.3:
4)索引 i = 3,A[3] = 47,47 < 59,且结点59左孩子为空,故47为59结点的左孩子,如图2.4:
5)索引 i = 4,A[4] = 35,35 < 47,且结点47左孩子为空,故35为47结点的左孩子,如图2.5:
采用同样规则遍历整个数组得到如图2.6所示的一棵排序二叉树。
2.3 二叉排序树查找
由二叉树的递归定义性质,二叉排序树的查找同样可以使用如下递归算法查找。
如果树是空的,则查找结束,无匹配。
如果被查找的值和根结点的值相等,查找成功。否则就在子树中继续查找。如果被查找的值小于根结点的值就选择左子树,大于根结点的值就选择右子树。
在理想情况下,每次比较过后,树会被砍掉一半,近乎折半查找。
遍历打印可以使用中序遍历,打印出来的结果是从小到大的有序数组。
查找代码:
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */ /* 二叉树的二叉链表结点结构定义 */
typedef struct BiTNode /* 结点结构 */
{int data; /* 结点数据 */struct BiTNode *lchild, *rchild; /* 左右孩子指针 */
} BiTNode, *BiTree;/* 递归查找二叉排序树T中是否存在key, */
/* 指针f指向T的双亲,其初始调用值为NULL */
/* 若查找成功,则指针p指向该数据元素结点,并返回TRUE */
/* 否则指针p指向查找路径上访问的最后一个结点并返回FALSE */
Status SearchBST(BiTree t, int key, BiTree f, BiTree *p)
{ if (!t) /* 查找不成功 */{ *p = f; return FALSE; }else if (key == t->data) /* 查找成功 */{ *p = t; return TRUE; } else if (key < t->data) return SearchBST(t->lchild, key, t, p); /* 在左子树中继续查找 */else return SearchBST(t->rchild, key, t, p); /* 在右子树中继续查找 */
}
对于图2.6所示的二叉排序树,若查找结点key为47则可以查找成功,若查找结点key为75,树中不存在key为75的结点,故查找失败,则查找指针p指向查找路径的最后一个结点,即结点73。
2.4 二叉排序树插入
二叉排序的插入是建立在二叉排序的查找之上的,插入一个结点,就是通过查找发现该结点合适插入位置,把结点直接放进去。 其实在2.2节中一步步构造二叉排序树的过程中就是结点插入过程。由此可以得出二叉排序树插入规则如下:
若查找的key已经有在树中,则p指向该数据结点。
若查找的key没有在树中,则p指向查找路径上最后一个结点。
例如:若在图2.6展示的二叉排序树中插入结点数据为60的结点。
首先查找结点数据为60的结点,二叉排序树中不存在结点为60的结点,因此查找失败。此时查找指针p指向查找路径最后一个结点即指向59结点。由于60>59且59结点右子树为空,故将60结点作为59结点的右孩子,插入完成。插入后的二叉排序树如图2.8所示。
插入代码:
struct BiTree {int data;BiTree *lchild;BiTree *rchild;
};//在二叉排序树中插入查找关键字key
BiTree* InsertBST(BiTree *t,int key)
{if (t == NULL){t = new BiTree();t->lchild = t->rchild = NULL;t->data = key;return t;}if (key < t->data) t->lchild = InsertBST(t->lchild, key);elset->rchild = InsertBST(t->rchild, key);return t;
}//n个数据在数组d中,tree为二叉排序树根
BiTree* CreateBiTree(BiTree *tree, int d[], int n)
{for (int i = 0; i < n; i++)tree = InsertBST(tree, d[i]);
}
2.5 二叉排序树删除
二叉树的删除可不再像二叉树的插入那么容易了,以为删除某个结点以后,会影响到树的其它部分的结构。
删除的时候需要考虑以下几种情况:
1)删除结点为叶子结点;
2)删除的结点只有左子树;
3)删除的结点只有右子树
4)删除的结点既有左子树又有右子树。
考虑前三种情况,处理方式比较简单。
例如:若要删除图2.8中的结点93,则直接删除该结点即可。删除后二叉排序树如图2.9所示:
若要删除的结点为结点35,结点35只有右子树,只需删除结点35,将右子树37结点替代结点35即可。删除后的二叉排序树如图2.10所示:
删除只有左子树的结点与此情况类似。
情况4相对比较复杂,对于待删除结点既有左子树又有右子树的情形,最佳办法是在剩余的序列中找到最为接近的结点来代替删除结点。这种代替并不会影响到树的整体结构。那么最为接近的结点如何获取呢?
可以采用中序遍历的方式来得到删除结点的前驱和后继结点。选取前驱结点或者后继结点代替删除结点即可。
例如:待删除的结点为47,图2.8中二叉排序树的中序遍历序列为35 37 47 51 59 60 61 73 87 93 98。则结点47的前驱结点为37,则直接将37结点替代47结点即可。替换后的二叉排序树如图2.11所示:
删除代码:
/* 若二叉排序树T中存在关键字等于key的数据元素时,则删除该数据元素结点, */
/* 并返回TRUE;否则返回FALSE。 */
Status DeleteBST(BiTree *T,int key)
{ if(!*T) /* 不存在关键字等于key的数据元素 */ return FALSE;else{if (key==(*T)->data) /* 找到关键字等于key的数据元素 */ return Delete(T);else if (key<(*T)->data)return DeleteBST(&(*T)->lchild,key);elsereturn DeleteBST(&(*T)->rchild,key);}
}
/* 从二叉排序树中删除结点p,并重接它的左或右子树。 */
Status Delete(BiTree *p)
{BiTree q,s;if((*p)->rchild==NULL) /* 右子树空则只需重接它的左子树(待删结点是叶子也走此分支) */{q=*p; *p=(*p)->lchild; free(q);}else if((*p)->lchild==NULL) /* 只需重接它的右子树 */{q=*p; *p=(*p)->rchild; free(q);}else /* 左右子树均不空 */{q=*p; s=(*p)->lchild;while(s->rchild) /* 转左,然后向右到尽头(找待删结点的前驱) */{q=s;s=s->rchild;}(*p)->data=s->data; /* s指向被删结点的直接前驱(将被删结点前驱的值取代被删结点的值) */if(q!=*p)q->rchild=s->lchild; /* 重接q的右子树 */ elseq->lchild=s->lchild; /* 重接q的左子树 */free(s);}return TRUE;
}
3 结语
二叉排序树是一种查找与插入效率均较为高效的数据结构,同时,二叉排序树也是二叉树学习中的重点与难点。希望通过本篇的学习能够掌握二叉排序树的查找、插入与删除等基本操作,也希望读者给出指导意见。